Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor
Abstract
:1. Introduction
2. Data and Simulations
3. Results
3.1. LSWV Responses to Tropopause Layer Ozone Depletion
3.2. LSWV Responses to Tropopause Layer Ozone Recovery
3.3. LSWV Responses to Tropopause Layer Ozone Changes after 2000
4. Conclusion and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dessler, A.; Schoeberl, M.; Wang, T.; Davis, S.; Rosenlof, K. Stratospheric Water Vapor Feedback. Proc. Natl Acad. Sci. USA 2013, 110, 18087–18091. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.M. Radiative Forcing Due to Stratospheric Ozone Changes 1979–1997, Using Updated Trend Estimates. J. Geophys. Res. Atmos. 1999, 104, 24395–24399. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Chiodo, G.; Previdi, M.; Ponater, M.; Conley, A.J.; Polvani, L.M. Stratospheric Water Vapor: An Important Climate Feedback. Clim. Dyn. 2019, 53, 1697–1710. [Google Scholar] [CrossRef]
- Forster, P.M.; Shine, K. Assessing the Climate Impact of Trends in Stratospheric Water Vapor. Geophys. Res. Lett. 2002, 29, 10-11–10-14. [Google Scholar] [CrossRef] [Green Version]
- Stenke, A.; Grewe, V. Simulation of Stratospheric Water Vapor Trends: Impact on Stratospheric Ozone Chemistry. Atmos. Chem. Phys. 2005, 5, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Avery, M.A.; Davis, S.M.; Rosenlof, K.H.; Ye, H.; Dessler, A.E. Large Anomalies in Lower Stratospheric Water Vapour and Ice During the 2015–2016 El Niño. Nat. Geosci. 2017, 10, 405. [Google Scholar] [CrossRef]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenlof, K.H.; Reid, G.C. Trends in the Temperature and Water Vapor Content of the Tropical Lower Stratosphere: Sea Surface Connection. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Matthes, K.; Tian, W.; Park, W.; Shangguan, M.; Ding, A. Solar Impacts on Decadal Variability of Tropopause Temperature and Lower Stratospheric (LS) Water Vapour: A Mechanism through Ocean-Atmosphere Coupling. Clim. Dyn. 2019, 52, 5585–5604. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Xie, F.; Sun, C.; Luo, J.; Cai, Q.; Zhang, J.; Li, J.; Tian, H.J. Analysis of Factors Influencing Tropical Lower Stratospheric Water Vapor during 1980–2017. NPJ Clim. Atmos. Sci. 2020, 3, 35. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Haynes, P. Control of Interannual and Longer-Term Variability of Stratospheric Water Vapor. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Forster, P.M.; Fujiwara, M.; Fu, Q.; Vömel, H.; Gohar, L.K.; Johanson, C.; Ammerman, M. Radiation Balance of the Tropical Tropopause Layer. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Fueglistaler, S.; Dessler, A.; Dunkerton, T.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical Tropopause Layer. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Tian, W.; Chipperfield, M.P.; Gray, L.J.; Zawodny, J.M. Quasi-Biennial Oscillation and Tracer Distributions in a Coupled Chemistry-Climate Model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Randel, W.J.; Jensen, E.J. Physical Processes in the Tropical Tropopause Layer and Their Roles in a Changing Climate. Nat. Geosci. 2013, 6, 169. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Bonazzola, M.; Haynes, P.; Peter, T. Stratospheric Water Vapor Predicted from the Lagrangian Temperature History of Air Entering the Stratosphere in the Tropics. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Boutle, I.A.; Bushell, A.C.; Butchart, N.; Cullen, M.J.; Field, P.R.; Furtado, K.; Manners, J.C.; Milton, S.F.; Morcrette, C.J. Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. J. Clim. 2015, 28, 6516–6535. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Smith, M.; Yang, Q.J. The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-Troposphere Exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Xia, Y.; Huang, Y.; Hu, Y.; Yang, J. Impacts of Tropical Tropopause Warming on the Stratospheric Water Vapor. Clim. Dyn. 2019, 53, 3409–3418. [Google Scholar] [CrossRef]
- Son, S.-W.; Lim, Y.; Yoo, C.; Hendon, H.; Kim, J. Stratospheric Control of Madden-Julian Oscillation and Its Teleconnection. In Proceedings of the 19th EGU (EGU2017), Vienna, Austria, 23–28 April 2017; p. 4190. [Google Scholar]
- Kumar, V.; Dhaka, S.; Reddy, K.; Gupta, A.; Prasad, S.S.; Panwar, V.; Singh, N.; Ho, S.-P.; Takahashi, M. Impact of Quasi-Biennial Oscillation on the Inter-Annual Variability of the Tropopause Height and Temperature in the Tropics: A Study Using Cosmic/Formosat-3 Observations. Atmos. Res. 2014, 139, 62–70. [Google Scholar] [CrossRef]
- Calvo, N.; Giorgetta, M.A.; Garcia-Herrera, R.; Manzini, E. Nonlinearity of the Combined Warm ENSO and QBO Effects on the Northern Hemisphere Polar Vortex in MAECHAM5 Simulations. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Free, M.; Seidel, D.J. Observed El Niño-Southern Oscillation Temperature Signal in the Stratosphere. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Randel, W.J.; Garcia, R.R.; Calvo, N.; Marsh, D. ENSO Influence on Zonal Mean Temperature and Ozone in the Tropical Lower Stratosphere. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Scaife, A.A.; Butchart, N.; Jackson, D.R.; Swinbank, R. Can Changes in ENSO Activity Help to Explain Increasing Stratospheric Water Vapor? Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y. Signals of El Niño Modoki in the Tropical Tropopause Layer and Stratosphere. Atmos. Chem. Phys. 2012, 12, 5259–5273. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F.; Oltmans, S.J.; Rosenlof, K.; Nedoluha, G.E. Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause Temperatures. J. Atmos. Sci. 2004, 61, 2133–2148. [Google Scholar] [CrossRef]
- Ding, Q.; Fu, Q. A Warming Tropical Central Pacific Dries the Lower Stratosphere. Clim. Dyn. 2018, 50, 2813–2827. [Google Scholar] [CrossRef]
- McFarlane, N.J. Connections between Stratospheric Ozone and Climate: Radiative Forcing, Climate Variability, and Change. Atmos. Ocean. 2008, 46, 139–158. [Google Scholar] [CrossRef] [Green Version]
- Steinbrecht, W.; Claude, H.; Köhler, U.; Hoinka, K.J. Correlations between Tropopause Height and Total Ozone: Implications for Long-Term Changes. J. Geophys. Res. 1998, 103, 19183–19192. [Google Scholar] [CrossRef]
- Son, S.-W.; Polvani, L.M.; Waugh, D.W.; Birner, T.; Akiyoshi, H.; Garcia, R.R.; Gettelman, A.; Plummer, D.A.; Rozanov, E. The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends. J. Clim. 2009, 22, 429–445. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.; Reichler, T.J. Long-Term Evolution of the Cold Point Tropical Tropopause: Simulation Results and Attribution Analysis. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Tian, W.; Chipperfield, M.P. Radiative Effect of Ozone Change on Stratosphere-Troposphere Exchange. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Roff, G.; Thompson, D.W.; Hendon, H.J. Does Increasing Model Stratospheric Resolution Improve Extended-Range Forecast Skill? Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Sigmond, M.; Scinocca, J.F.; Kushner, P.J. Impact of the Stratosphere on Tropospheric Climate Change. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Bekki, S.; Dhomse, S.; Harris, N.R.; Hassler, B.; Hossaini, R.; Steinbrecht, W.; Thiéblemont, R.; Weber, M.J. Detecting Recovery of the Stratospheric Ozone Layer. Nature 2017, 549, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.M.; Rosenlof, K.H.; Hassler, B.; Hurst, D.F.; Read, W.G.; Vömel, H.; Selkirk, H.; Fujiwara, M.; Damadeo, R. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) Database: A Long-Term Database for Climate Studies. Earth Syst. Sci. Data 2016, 8, 461. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.; Fiorino, M.; Potter, G.J. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Roads, J.J. The NCEP-NCAR, NCEP-DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor. 2003, 4, 826–840. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.; Lawrence, D.; Lindsay, K. The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteor. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Neale, R.B.; Richter, J.; Park, S.; Lauritzen, P.H.; Vavrus, S.J.; Rasch, P.J.; Zhang, M. The Mean Climate of the Community Atmosphere Model (CAM4) in Forced Sst and Fully Coupled Experiments. J. Clim. 2013, 26, 5150–5168. [Google Scholar] [CrossRef] [Green Version]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 Ocean Component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.M.; Bailey, D.A.; Briegleb, B.P.; Light, B.; Hunke, E. Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice. J. Clim. 2012, 25, 1413–1430. [Google Scholar] [CrossRef]
- Garcia, R.; Marsh, D.; Kinnison, D.; Boville, B.; Sassi, F. Simulation of Secular Trends in the Middle Atmosphere, 1950–2003. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.-F.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1 (WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Birner, T.; Eyring, V.; Akiyoshi, H.; Bekki, S.; Brühl, C.; Dameris, M.; Kinnison, D.E.; Lefèvre, F.; Lott, F.J.; et al. The Tropical Tropopause Layer 1960–2100. Atmos. Chem. Phys. 2009, 9, 1621–1637. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.; Tian, W.; Zhang, J.; Sun, C. The Relative Impacts of El Niño Modoki, Canonical El Niño, and QBO on Tropical Ozone Changes since the 1980s. Environ. Res. Lett. 2014, 9, 064020. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Chipperfield, M.P.; Dhomse, S.S.; Feng, W.; McKenzie, R.; Velders, G.J.; Pyle, J.A. Quantifying the Ozone and Ultraviolet Benefits Already Achieved by the Montreal Protocol. Nat. Commun. 2015, 6, 7233. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.; Tian, W.; Fu, Q.; Jin, F.-F.; Hu, Y.; Zhang, J.; Wang, W.; Sun, C.; Feng, J. A Connection from Arctic Stratospheric Ozone to El Niño-Southern Oscillation. Environ. Res. Lett. 2016, 11, 124026. [Google Scholar] [CrossRef] [Green Version]
- Brewer, A. Evidence for a World Circulation Provided by the Measurements of Helium and Water Vapour Distribution in the Stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Rosenlof, K.H. How Water Enters the Stratosphere. Science 2003, 302, 1691–1692. [Google Scholar] [CrossRef] [PubMed]
- Austin, J.; Wilson, R.J. Ensemble Simulations of the Decline and Recovery of Stratospheric Ozone. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Revell, L.E.; Tummon, F.; Salawitch, R.J.; Stenke, A.; Peter, T.J. The Changing Ozone Depletion Potential of N2O in a Future Climate. Geophys. Res. Lett. 2015, 42, 10047–10055. [Google Scholar] [CrossRef] [Green Version]
- Fiore, A.M.; Naik, V.; Leibensperger, E.M.; Association, W.M. Air Quality and Climate Connections. J. Air. Waste. Manag. 2015, 65, 645–685. [Google Scholar] [CrossRef]
- Hegglin, M.; Plummer, D.; Shepherd, T.; Scinocca, J.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D.; Rozanov, A.; Urban, J. Vertical Structure of Stratospheric Water Vapour Trends Derived from Merged Satellite Data. Nat. Geosci. 2014, 7, 768. [Google Scholar] [CrossRef] [Green Version]
Exp *1 | Specified Ozone Forcing |
---|---|
R0 | Time-slice run as the control experiment using case F_2000_WACCM_SC. The experiment is completed with no tropopause layer ozone change. |
R1 | Same as R0, except that the global tropopause layer ozone is decreased by 10% compared with R0. |
R2 | Same as R0, except that the tropopause layer ozone at mid-low latitudes is decreased by 10% compared with R0. |
R3 | Same as R0, except that the polar tropopause layer ozone is decreased by 10% compared with R0. |
R4 | Same as R0, except that the global tropopause layer ozone is increased by 10% compared with R0. |
R5 | Same as R0, except that the tropopause layer ozone at mid-low latitudes is increased by 10% compared with R0. |
R6 | Same as R0, except that the polar tropopause layer ozone is increased by 10% compared with R0. |
R7 | Same as R0, except that the tropopause layer ozone at mid-low latitude is decreased by 10%, and polar tropopause layer ozone is increased by 10% compared with R0. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Xie, F.; Tian, H.; Luo, J. Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor. Atmosphere 2021, 12, 291. https://doi.org/10.3390/atmos12030291
Lu J, Xie F, Tian H, Luo J. Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor. Atmosphere. 2021; 12(3):291. https://doi.org/10.3390/atmos12030291
Chicago/Turabian StyleLu, Jinpeng, Fei Xie, Hongying Tian, and Jiali Luo. 2021. "Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor" Atmosphere 12, no. 3: 291. https://doi.org/10.3390/atmos12030291
APA StyleLu, J., Xie, F., Tian, H., & Luo, J. (2021). Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor. Atmosphere, 12(3), 291. https://doi.org/10.3390/atmos12030291