Reconstructing Summer Precipitation with MXD Data from Pinus sylvestris Growing in the Stockholm Archipelago
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Tree-Ring Data
2.3. Data Analysis
2.3.1. Standardization and Statistical Analysis
2.3.2. Climate Data
2.3.3. Precipitation Reconstruction
2.3.4. Light Ring Formation Years
3. Results
3.1. Chronology Characteristics
3.2. Climate Sensitivity
3.3. Regional Summer Precipitation Reconstruction
3.4. Light Ring Chronology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linderholm, H.W.; Nicolle, M.; Francus, P.; Gajewski, K.; Helama, S.; Korhola, A.; Solomina, O.; Yu, Z.; Zhang, P.; D’Andrea, W.J.; et al. Arctic hydroclimate variability during the last 2000 years: Current understanding and research challenges. Clim. Past 2018, 14, 473–514. [Google Scholar] [CrossRef] [Green Version]
- St. George, S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 2014, 95, 132–150. [Google Scholar] [CrossRef]
- St. George, S.; Ault, T.R. The imprint of climate within Northern Hemisphere trees. Quat. Sci. Rev. 2014, 89, 1–4. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; van der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought Reconstructions for the Continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, R.; Wilson, R.; Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Schneider, L.; Smerdon, J.E.; Büntgen, U.; Wilson, R.J.S.; Myglan, V.S.; Kirdyanov, A.V.; Esper, J. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015, 42, 4556–4562. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Khodri, M.; Corona, C.; Guillet, S.; Poulain, V.; Bekki, S.; Guiot, J.; Luckman, B.H.; Oppenheimer, C.; Lebas, N.; et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years. Nat. Geosci. 2015, 8, 784–788. [Google Scholar] [CrossRef]
- Wilson, R.; D’Arrigo, R.; Buckley, B.; Büntgen, U.; Esper, J.; Frank, D.; Luckman, B.; Payette, S.; Vose, R.; Youngblut, D. A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W.; Björklund, J.A.; Seftigen, K.; Gunnarson, B.E.; Grudd, H.; Jeong, J.-H.; Drobyshev, I.; Liu, Y. Dendroclimatology in Fennoscandia—From past accomplishments to future potential. Clim. Past 2010, 6, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Briffa, K.R.; Bartholin, T.S.; Eckstein, D.; Jones, P.D.; Karlén, W.; Schweingruber, F.H.; Zetterberg, P.A. 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature 1990, 346, 434–439. [Google Scholar] [CrossRef]
- Helama, S.; Lindholm, M.; Timonen, M.; Meriläinen, J.; Eronen, M. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer temperatures for 7500 years. Holocene 2002, 12, 681–687. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Gunnarson, B.E. Summer Temperature Variability in Central Scandinavia during the Last 3600 Years. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 231–241. [Google Scholar] [CrossRef]
- Grudd, H. Torneträsk tree-ring width and density ad 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 2008, 31, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Gunnarson, B.; Linderholm, H.; Moberg, A. Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Clim. Dyn. 2011, 36, 97–108. [Google Scholar] [CrossRef]
- Björklund, J.A.; Gunnarson, B.E.; Seftigen, K.; Esper, J.; Linderholm, H.W. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Clim. Past 2014, 10, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.; Salo, R.; Björklund, J.; Seftigen, K.; Zhang, P.; Gunnarson, B.; Aravena, J.-C.; Linderholm, H.W.A. 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene 2018, 28, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Loader, N.J.; Young, G.H.F.; Grudd, H.; McCarroll, D. Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat. Sci. Rev. 2013, 62, 97–113. [Google Scholar] [CrossRef]
- Drobyshev, I.; Niklasson, M.; Linderholm, H.W.; Seftigen, K.; Hickler, T.; Eggertsson, O. Reconstruction of a regional drought index in southern Sweden since AD 1750. Holocene 2011, 21, 667–679. [Google Scholar] [CrossRef]
- Seftigen, K.; Goosse, H.; Klein, F.; Chen, D. Hydroclimate variability in Scandinavia over the last millennium—Insights from a climate model-proxy data comparison. Clim. Past 2017, 13, 1831–1850. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Lindholm, M. Droughts and rainfall in south-eastern Finland since AD 874, inferred from Scots pine ring-widths. Boreal Environ. Res. 2003, 8, 171–183. [Google Scholar]
- Jönsson, K.; Nilsson, C. Scots Pine (pinus sylvestris L.) on Shingle Fields: A Dendrochronologic Reconstruction of Early Summer Precipitation in Mideast Sweden. J. Clim. 2009, 22, 4710–4722. [Google Scholar] [CrossRef] [Green Version]
- Seftigen, K.; Fuentes, M.; Ljungqvist, F.C.; Björklund, J. Using Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability. Clim. Dyn. 2020. [Google Scholar] [CrossRef]
- Rydval, M.; Druckenbrod, D.; Anchukaitis, K.J.; Wilson, R. Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Can. J. For. Res. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Anchukaitis, K.; Briffa, K.R.; Büntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B.; et al. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Filion, L.; Payette, S.; Gauthier, L.; Boutin, Y. Light rings in subarctic conifers as a dendrochronological tool. Quat. Res. 1986, 26, 272–279. [Google Scholar] [CrossRef]
- Girardin, M.P.; Tardif, J.C.; Epp, B.; Conciatori, F. Frequency of cool summers in interior North America over the past three centuries. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Tardif, J.C.; Girardin, M.P.; Conciatori, F. Light rings as bioindicators of climate change in Interior North America. Glob. Planet. Chang. 2011, 79, 134–144. [Google Scholar] [CrossRef]
- Wang, L.; Payette, S.; Bégin, Y.A. Quantitative Definition of Light Rings in Black Spruce (Picea mariana) at the Arctic Treeline in Northern Québec, Canada. Arct. Antarct. Alp. Res. 2000, 32, 324–330. [Google Scholar] [CrossRef]
- Liang, E.; Eckstein, D. Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytol. 2006, 171, 783–791. [Google Scholar] [CrossRef]
- Rydin, H.; Snoeijs, P.; Diekmann, M.; Van Der Maarel, E. (Eds.) Swedish Plant Geography (Acta Phytogeographica Suecica); Svenska Växtgeografiska Sällskapet: Uppsala, Sweden, 1999; ISBN 978-91-7210-484-6. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press: Cambridge, MA, USA, 1976; ISBN 978-0-12-268450-0. [Google Scholar]
- Schweingruber, F.H.; Fritts, H.C.; Bräker, O.U.; Drew, L.G.; Schär, E. The X-Ray Technique as Applied to Dendroclimatology. Tree-Ring Bull. 1978, 38, 61–91. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Fritts, H.C.; Guiot, J.; Gordon, G.A.; Schweingruber, F. Methods of Calibration, Verification, and Reconstruction. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 163–217. ISBN 978-94-015-7879-0. [Google Scholar]
- Schweingruber, F.H. Tree Rings and Environment: Dendroecology; Paul Haupt AG: Berne, Switzerland, 1996; p. 609. [Google Scholar]
- Cook, E.R.; Krusic, P.J. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont-Doherty Earth Observatory, Columbia University: Palisades, NY, USA, 2005. [Google Scholar]
- Cook, E.; Briffa, K.; Shiyatov, S.; Mazepa, V. Tree-ring standardization and growth-trend estimation. In Methods of Dendrochronology. Applications in the Environmental Sciences; Cook, E., Kairiukstis, L., Eds.; Kluwer Academic Pub: Berlin, Germany, 1990; pp. 104–162. [Google Scholar]
- Warren, W.G. On Removing the Growth Trend from Dendrochronological Data. Tree-Ring Bull. 1980, 40, 35–44. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-0-7923-0586-6. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteor. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Oldenborgh, G.J.V. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Surface Temperature Reconstructions for the Last 2000 Years; The National Academies Press: Washington, DC, USA, 2006; ISBN 978-0-309-10225-4. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Niklasson, M.; Molin, T. Summer Moisture Variability in East Central Sweden since the Mid-Eighteenth Century Recorded in Treerings. Geogr. Ann. Ser. A Phys. Geogr. 2004, 86, 277–287. [Google Scholar] [CrossRef]
- Seftigen, K.; Linderholm, H.W.; Drobyshev, I.; Niklasson, M. Reconstructed drought variability in southeastern Sweden since the 1650s. Int. J. Climatol. 2013, 33, 2449–2458. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Büntgen, U.; Timonen, M.; Frank, D.C. Variability and extremes of northern Scandinavian summer temperatures over the past two millennia. Glob. Planet. Chang. 2012, 88–89, 1–9. [Google Scholar] [CrossRef]
- McCarroll, D.; Loader, N.J.; Jalkanen, R.; Gagen, M.H.; Grudd, H.; Gunnarson, B.E.; Kirchhefer, A.J.; Friedrich, M.; Linderholm, H.W.; Lindholm, M.; et al. A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene 2013, 23, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.; Molin, T. Early nineteenth century drought in east central Sweden inferred from dendrochronological and historical archives. Clim. Res. 2005, 29, 63–72. [Google Scholar] [CrossRef]
- Esper, J.; Schneider, L.; Smerdon, J.E.; Schöne, B.R.; Büntgen, U. Signals and memory in tree-ring width and density data. Dendrochronologia 2015, 35, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.; Büntgen, U.; Böhm, R.; Maugeri, M.; Esper, J. Warmer early instrumental measurements versus colder reconstructed temperatures: Shooting at a moving target. Quat. Sci. Rev. 2007, 26, 3298–3310. [Google Scholar] [CrossRef]
- Cleaveland, M.K. Climatic Response of Densitometric Properties in Semiarid Site Tree Rings. Tree-Ring Bull. 1986, 46, 13–29. [Google Scholar]
- Hsiao, T.C.; Acevedo, E. Plant responses to water deficits, water-use efficiency, and drought resistance. Agric. Meteorol. 1974, 14, 59–84. [Google Scholar] [CrossRef]
- Zweifel, R.; Rigling, A.; Dobbertin, M. Species-Specific Stomatal Response of Trees to Drought: A Link to Vegetation Dynamics? J. Veg. Sci. 2009, 20, 442–454. [Google Scholar] [CrossRef]
- Gindl, W. Climatic Significance of Light Rings in Timberline Spruce, Picea abies, Austrian Alps. Arct. Antarct. Alp. Res. 1999, 31, 242–246. [Google Scholar] [CrossRef]
- Yamaguchi, D.K.; Filion, L.; Savage, M. Relationship of Temperature and Light Ring Formation at Subarctic Treeline and Implications for Climate Reconstruction. Quat. Res. 1993, 39, 256–262. [Google Scholar] [CrossRef]
- Deslauriers, A.; Morin, H.; Urbinati, C.; Carrer, M. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 2003, 17, 477–484. [Google Scholar] [CrossRef]
- Schmitt, U.; Jalkanen, R.; Eckstein, D. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn. 2004, 38. [Google Scholar] [CrossRef] [Green Version]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The Summer North Atlantic Oscillation: Past, Present, and Future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Woollings, T.; Hodges, K. Variability of the North Atlantic summer storm track: Mechanisms and impacts on European climate. Environ. Res. Lett. 2013, 8, 034037. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Folland, C.K. Summer North Atlantic Oscillation (SNAO) variability on decadal to palaeoclimate time scales. PAGES Mag. 2017, 25, 57–60. [Google Scholar] [CrossRef]
Site | Lat. (N) | Long. (E) | Period | No. of Trees | MSL (Years) | SI | MS |
---|---|---|---|---|---|---|---|
Askö | 58.82 | 17.64 | 1775–2017 | 31 | 143 | 0.62 | 0.19 |
Nacka | 59.27 | 18.23 | 1773–2017 | 26 | 165 | 0.69 | 0.15 |
Björnö | 59.23 | 18.57 | 1734–2018 | 17 | 188 | 0.58 | 0.18 |
Blidö | 59.61 | 18.91 | 1826–2017 | 16 | 148 | 0.55 | 0.18 |
Archipelago Composite | 1734–2018 | 90 | 159 | 0.59 | 0.17 |
1895–1956 Calibration 1957–2018 Verification | 1957–2018 Calibration 1895–1956 Verification | 1895–2018 Full Calibration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR Parameter | Target Season | N. obs. | r | r2 | RE | N. obs. | r | r2 | RE | CE | N. obs. | r | r2 | |
MXD | MJJ | 62 | 0.59 * | 0.35 | 0.42 | 0.42 | 62 | 0.70* | 0.48 | 0.25 | 0.23 | 124 | 0.64 * | 0.41 |
TRW | MJJ | 62 | 0.60 * | 0.36 | 0.31 | 0.31 | 62 | 0.56* | 0.32 | 0.36 | 0.35 | 124 | 0.58 * | 0.33 |
TRW | MJ | 62 | 0.54 * | 0.29 | 0.42 | 0.41 | 62 | 0.68* | 0.46 | 0.23 | 0.23 | 124 | 0.61 * | 0.38 |
Months | Mean Precipitation(mm) | Difference Verification between NY and LRY | Mean Temperature | Difference Verification between NY and LRY | ||
---|---|---|---|---|---|---|
NY | LRY | Significance | NY | LRY | Significance | |
April | 32 | 35 | NS * | 4 | 4 | NS * |
May | 38 | 25 | p < 0.01 | 9 | 10 | p 0.05 |
June | 54 | 34 | p < 0.01 | 14 | 15 | p < 0.01 |
July | 75 | 43 | p < 0.01 | 16.5 | 19 | p < 0.01 |
August | 74 | 66 | NS * | 15.6 | 16.5 | p < 0.01 |
September | 57 | 50 | NS * | 12 | 12 | NS * |
MJJ | 56 | 34 | p < 0.01 | 13 | 15 | p < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, E.; Gunnarson, B.E.; Holzkämper, S. Reconstructing Summer Precipitation with MXD Data from Pinus sylvestris Growing in the Stockholm Archipelago. Atmosphere 2020, 11, 790. https://doi.org/10.3390/atmos11080790
Rocha E, Gunnarson BE, Holzkämper S. Reconstructing Summer Precipitation with MXD Data from Pinus sylvestris Growing in the Stockholm Archipelago. Atmosphere. 2020; 11(8):790. https://doi.org/10.3390/atmos11080790
Chicago/Turabian StyleRocha, Eva, Björn E. Gunnarson, and Steffen Holzkämper. 2020. "Reconstructing Summer Precipitation with MXD Data from Pinus sylvestris Growing in the Stockholm Archipelago" Atmosphere 11, no. 8: 790. https://doi.org/10.3390/atmos11080790
APA StyleRocha, E., Gunnarson, B. E., & Holzkämper, S. (2020). Reconstructing Summer Precipitation with MXD Data from Pinus sylvestris Growing in the Stockholm Archipelago. Atmosphere, 11(8), 790. https://doi.org/10.3390/atmos11080790