PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland
Abstract
:1. Introduction
2. Method
2.1. Locations of Measurement Points
2.2. Collection of Samples
2.3. Methods of Trace Elements Analysis
3. Results and Discussion
3.1. PM1 Concentrations
3.2. Concentration of Trace Elements
3.3. Principal Component Analysis (PCA)
3.4. PM1 in Comparison with Fractions 1–2.5 µm, 2.5–10 µm, and >10 µm
4. Conclusions
- Among determined concentrations of trace elements (Cd, Cr, Mn, Ni, Pb, Sb and Se) in PM1 collected in indoor air (in preschools), and in the outdoor air (in the surroundings of power plants and coking plants), the highest concentrations were evidenced for Cr, Cd, Mn and Ni.
- Source identification through PCA extracted three factors. PC1 in the outdoor air represent the re-suspension of surface road dust that comes from both coal combustion and vehicle emissions including abrasion of an automobile tire, PC2 indicates a contribution to re-suspension of soil dust contaminated by sewage sludge dumping on agricultural fields, while PC3 points to variety of industrial emissions. In the indoor air PC1 points to an anthropogenic origin viz. coal emissions, and sewage sludge dumping on agricultural fields, PC2 indicates vehicular emissions and fossil fuels burning, while PC3 has been identified as a mixed soil factor.
- Generally, the ratios of PM1/PM2.5, PM1/PM10, and PM2.5/PM10 are about 0.75, 0.55 and 0.80, respectively, which indicate a strong contribution of small particles to PM10 and PM2.5.
- The highest average percentage contents of the Cd, Cr, Mn, Ni, Pb, Sb and Se in <1 µm, 1–2.5 µm, 2.5–10 µm, and >10 µm fractions point to Sb (67%), Cd (47%) and Pb (41%) in outdoor samples, Sb (57%) and Pb (50%), then Se (42%) in indoor samples.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Fraction | Reagent | Experimental conditions |
---|---|---|
Fraction 1 (F1) | 15 cm3 H2O Milli-Q | 3 h shaking (room temperature) |
Fraction 2 (F2) | 10 cm3 NH2OH⋅HCl (0,25M) | 5 h shaking (room temperature) |
Fraction 3 (F3) | 7.5 cm3 H2O2 (30%) + 7.5 cm3 H2O2 (30%) + 15 cm3 NH4AcO (2,5M) | First evaporation at 95 °C until near dryness. Second evaporation at 95 °C until near dryness. Shaking 90 min (room temperature). |
Fraction 4 (F4) | 10 cm3 (HNO3:HCl:HClO4) (6:2:5) | 5 h shaking (room temperature) |
References
- IARC International Agency for Research on Cancer. Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2015. [Google Scholar]
- IARC International Agency for Research on Cancer. Outdoor Air Pollution; International Agency for Research on Cancer: Lyon, France, 2016; Volume 109. [Google Scholar]
- Skrzypek, M.; Zejda, J.E.; Kowalska, M.; Czech, E.M. Effect of residential proximity to traffic on respiratory disorders in school children in Upper Silesian Industrial Zone, Poland. Int. J. Occup. Med. Environ. Health 2013, 26, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Kasznia-Kocot, J.; Kowalska, M.; Górny, R.L.; Niesler, A.; Wypych-Ślusarska, A. Environmental risk factors for respiratory symptoms and childhood asthma. Ann. Agric. Environ. Med. 2010, 17, 221–229. [Google Scholar] [PubMed]
- Kim, S.Y.; Peel, J.L.; Hannigan, M.P.; Dutton, S.J.; Sheppard, L.; Clark, M.L.; Vedal, S. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environ. Health Perspect. 2012, 120, 1094–1099. [Google Scholar] [CrossRef]
- Kowalska, M.; Zejda, J.E. Relationship between PM2.5 concentration in the ambient air and daily exacerbation of respiratory diseases in the population of Silesian voivodeship during winter smog. Med. Pr. 2018, 69, 523–530. [Google Scholar] [CrossRef]
- Bose, S.; Romero, K.; Psoter, K.J.; Curriero, F.C.; Chen, C.; Johnson, C.M.; Kaji, D.; Breysse, P.N.; Williams, D.L.; Ramanathan, M.; et al. Association of traffic air pollution and rhinitis quality of life in Peruvian children with asthma. PLoS ONE 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Khalili, R.; Bartell, S.M.; Hu, X.; Liu, Y.; Chang, H.H.; Belanoff, C.; Strickland, M.J.; Vieira, V.M. Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: A case-crossover analysis. Environ. Heal. 2018, 17, 1–9. [Google Scholar]
- Keet, C.A.; Keller, J.P.; Peng, R.D. Long-term coarse particulate matter exposure is associated with asthma among children in Medicaid. Am. J. Respir. Crit. Care Med. 2018, 197, 737–746. [Google Scholar] [CrossRef]
- Lavigne, É.; Bélair, M.; Duque, D.R.; Do, M.T.; Stieb, D.M.; Hystad, P.; Van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Crighton, E.; et al. Effect modification of perinatal exposure to air pollution and childhood asthma incidence. Eur. Respir. J. 2018, 51, 1–13. [Google Scholar] [CrossRef]
- Yang, M.; Chu, C.; Bloom, M.S.; Li, S.; Chen, G.; Heinrich, J.; Markevych, I.; Knibbs, L.D.; Bowatte, G.; Dharmage, S.C.; et al. Is smaller worse? New insights about associations of PM 1 and respiratory health in children and adolescents. Environ. Int. 2018, 120, 516–524. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E. Indoor air quality in urban and rural preschools in Upper Silesia, Poland: Particulate patter and carbon dioxide. Int. J. Environ. Res. Public Health 2015, 12, 7697–7711. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, S.; Zhang, Y.; Zhang, W.; Li, D.; Wei, X.; He, Y.; Bell, M.L.; Williams, G.; Marks, G.B.; et al. Effects of ambient PM1 air pollution on daily emergency hospital visits in China: An epidemiological study. Lancet Planet. Health 2017, 1, e221–e229. [Google Scholar] [CrossRef]
- Mei, M.; Song, H.; Chen, L.; Hu, B.; Bai, R.; Xu, D.; Liu, Y.; Zhao, Y.; Chen, C. Early-life exposure to three size- fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Part. Fibre Toxicol. 2018, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.J.A.; Robbins, D.; Haubold, S.; Kuhlbusch, T.; Fissan, H.; Donaldson, K.; Schins, R.; Stone, V.; Kreyling, W.; Lademann, J.; et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006, 3, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Seaton, A.; Tran, L.; Aitken, R.; Donaldson, K. Nanoparticles, human health hazard and regulation. J. R. Soc. Interface 2010, 7, S119–S129. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.R.; Becagli, S.; Garcia Orza, J.A.; Vecchi, R.; Dinoi, A.; Udisti, R.; Cabello, M. The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmos. Environ. 2013, 71, 176–186. [Google Scholar] [CrossRef]
- Spindler, G.; Grüner, A.; Müller, K.; Schlimper, S.; Herrmann, H. Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz - Influence of air mass inflow, weather conditions and season. J. Atmos. Chem. 2013, 70, 165–195. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Kaczmarek, K.; Mainka, A. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [Green Version]
- Zajusz-Zubek, E.; Radko, T.; Mainka, A. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef]
- Titos, G.; Lyamani, H.; Pandolfi, M.; Alastuey, A.; Alados-Arboledas, L. Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmos. Environ. 2014, 89, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Agudelo-Castañeda, D.M.; Teixeira, E.C. Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmos. Environ. 2014, 96, 186–200. [Google Scholar] [CrossRef]
- Sarti, E.; Pasti, L.; Rossi, M.; Ascanelli, M.; Pagnoni, A.; Trombini, M.; Remelli, M. The composition of PM1 and PM2.5 samples, metals and their water soluble fractions in the Bologna area (Italy). Atmos. Pollut. Res. 2015, 6, 708–718. [Google Scholar] [CrossRef]
- Lyu, X.-P.; Wang, Z.-W.; Cheng, H.-R.; Zhang, F.; Zhang, G.; Wang, X.-M.; Ling, Z.-H.; Wang, N. Chemical characteristics of submicron particulates (PM1.0) in Wuhan, Central China. Atmos. Res. 2015, 161–162, 169–178. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Mathews, B.; Szopa, S. A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland. Bull. Environ. Contam. Toxicol. 2012, 88, 722–729. [Google Scholar] [CrossRef]
- Ferm, M.; Areskoug, H.; Makkonen, U.; Wåhlin, P.; Yttri, K.E. Measurements of PM1,PM2.5 and PM10 in air at Nordic Background Stations Using Low-Cost Equipment; IVL Swedish Environmental Research Institute Ltd.: Stockholm, Sweden, 2008. [Google Scholar]
- Colbeck, I.; Lazaridis, M. Aerosols and environmental pollution. Naturwissenschaften 2010, 97, 117–131. [Google Scholar] [CrossRef]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010; Volume 96. [Google Scholar]
- Karar, K.; Gupta, A.K.; Kumar, A.; Biswas, A.K. Characterization and Identification of the Sources of Chromium, Zinc, Lead, Cadmium, Nickel, Manganese and Iron in PM10 Particulates at the Two Sites of Kolkata, India. Environ. Monit. Assess. 2006, 120, 347–360. [Google Scholar] [CrossRef]
- Lee, P.K.; Youm, S.J.; Jo, H.Y. Heavy metal concentrations and contamination levels from Asian dust and identification of sources: A case-study. Chemosphere 2013, 91, 1018–1025. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Nogawa, K.; Nordberg, M. Cadmium, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K.; Szopa, S. Hazardous Compounds in Urban PM in the Central Part of Upper Silesia (Poland) in Winter. Arch. Environ. Prot. 2013, 39, 53–65. [Google Scholar] [CrossRef]
- Langård, S.; Costa, M. Chromium, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Widziewicz, K.; Rogula-Kozłowska, W.; Loska, K. Cancer risk from arsenic and chromium species bound to PM2.5 and PM1 - Polish case study. Atmos. Pollut. Res. 2016, 7, 884–894. [Google Scholar] [CrossRef]
- Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [Google Scholar] [CrossRef]
- Świetlik, R.; Trojanowska, M.; Molik, A.; Łożyńska, M. Źródła i formy występowania chromu w powietrzu atmosferycznym; Konieczyński, J., Ed.; Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk: Zabrze, Poland, 2014; pp. 227–239. [Google Scholar]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Costa, M. Nickel, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Wiseman, C.L.S.; Zereini, F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 2014, 89, 282–289. [Google Scholar] [CrossRef]
- Skerfving, S.; Bergdahl, I.A. Lead, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Alexander, J. Selenium, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Chow, J.C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 2004, 54, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Medinsky, M.A.; Cuddihy, R.G.; Griffith, W.C.; Weissman, S.H.; McClellan, R.O. Projected uptake and toxicity of selenium compounds from the environment. Environ. Res. 1985, 36, 181–192. [Google Scholar] [CrossRef]
- ATSDR Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese; ATSDR: Atlanta, GA, USA, 2012. [Google Scholar]
- ATSDR Agency for Toxic Substances and Disease Registry. Toxicological Profile for Antimony and Compounds; ATSDR: Atlanta, GA, USA, 2017. [Google Scholar]
- Spangler, J.G.; Reid, J.C. Environmental manganese and cancer mortality rates by county in north carolina: An ecological study. Biol. Trace Elem. Res. 2010, 133, 128–135. [Google Scholar] [CrossRef]
- U.S. EPA. 2006 Urban Air Toxics Monitoring Program (UATMP) Final Report Volume I: Main Content; U.S. Environmental Protection Agency: Morrisville, NC, USA, 2007; Volume I.
- Estrellan, C.R.; Iino, F. Toxic emissions from open burning. Chemosphere 2010, 80, 193–207. [Google Scholar] [CrossRef]
- Fujiwara, F.; Rebagliati, R.J.; Marrero, J.; Gómez, D.; Smichowski, P. Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchem. J. 2011, 97, 62–67. [Google Scholar] [CrossRef]
- Tylenda, C.A.; Sullivan, D.W.; Fowler, B.A. Antimony, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- GUS Statistics Poland. Available online: https://stat.gov.pl/ (accessed on 8 October 2019).
- Kozielska, B. Concentration of benzene and its alkyl derivatives in Gliwice air. Arch. Environ. Prot. Waste Manag. Environ. Prot. 2013, 15, 81–88. [Google Scholar]
- KOBIZE - The National Center for Emissions Management. Krajowy bilans emisji SO2, NOx, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2014 - 2015 w układzie klasyfikacji SNAP Raport syntetyczny (in Polish); Instytut Ochrony Środowiska—Państwowy Instytut Badawczy: Warsaw, Poland, 2017. [Google Scholar]
- Zajusz-Zubek, E.; Mainka, A.; Korban, Z.; Pastuszka, J.S. Evaluation of highly mobile fraction of trace elements in PM10 collected in Upper Silesia (Poland): Preliminary results. Atmos. Pollut. Res. 2015, 6, 961–968. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Mainka, A.; Kaczmarek, K. Determination of water-soluble elements in PM2.5, PM10, and PM2.5-10 collected in the surroundings of power plants. In Proceedings of the E3S Web of Conferences, 18–21 October 2018, Zakopane, Poland; Volume 28, pp. 1–8.
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef]
- Kowalska, M.; Mainka, A.; Mucha, W. Przydatność optycznego miernika do oceny narażenia ludzi na drobny pył zawarty w powietrzu pomieszczeń/The usefulness of an optical monitor for the assessment of human exposure to fine dust in indoor air. Med. Pr. 2019, 70, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fernández Espinosa, A.J.; Ternero Rodríguez, M.; Barragán De La Rosa, F.J.; Jiménez Sánchez, J.C. A chemical speciation of trace metals for fine urban particles. Atmos. Environ. 2002, 36, 773–780. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E.; Kaczmarek, K. PM 2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis. Int. J. Environ. Res. Public Health 2015, 12, 7990–8008. [Google Scholar] [CrossRef] [PubMed]
- Mainka, A.; Zajusz- Zubek, E.; Kaczmarek, K. PM10 composition in urban and rural nursery schools in Upper Silesia, Poland: A trace elements analysis. Int. J. Environ. Pollut. 2017, 61, 98. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E.; Kozielska, B.; Brągoszewska, E. Investigation of air pollutants in rural nursery school—A case study. In Proceedings of the E3S Web of Conferences, Zakopane, Poland, 18–21 October 2017; Volume 28, pp. 1–8. [Google Scholar]
- PN-EN14902 Ambient air quality - Standard method for measurement of Pb, Cd, As and Ni in PM10 fraction of suspended particulate matter [Jakość powietrza atmosferycznego. Standardowa metoda oznaczania Pb, Cd, As i Ni we frakcji PM10 pyłu zawieszonego]; Polish Committee for Standardization: Warsaw, Poland, 2010.
- Zajusz-Zubek, E.; Mainka, A.; Kaczmarek, K. Toxic/Hazardous Substances and Environmental Engineering Dendrograms, heat maps and principal component analysis—The practical use of statistical methods for source apportionment of trace elements in PM. J. Environ. Sci. Heal. Part A 2019, 0, 1–8. [Google Scholar]
- Latif, M.T.; Yong, S.M.; Saad, A.; Mohamad, N.; Baharudin, N.H.; Bin Mokhtar, M.; Tahir, N.M. Composition of heavy metals in indoor dust and their possible exposure: A case study of preschool children in Malaysia. Air Qual. Atmos. Health 2014, 7, 181–193. [Google Scholar] [CrossRef]
- Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmos. Environ. 2014, 84, 133–143. [Google Scholar] [CrossRef]
- Yoon, C.; Lee, K.; Park, D. Indoor air quality differences between urban and rural preschools in Korea. Environ. Sci. Pollut. Res. 2011, 18, 333–345. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Particulate matter in rural and urban nursery schools in Portugal. Environ. Pollut. 2015, 202, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Juda-Rezler, K.; Reizer, M.; Oudinet, J.P. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmos. Environ. 2011, 45, 6557–6566. [Google Scholar] [CrossRef]
- Hieu, N.T.; Lee, B.K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Darus, F.M.; Nasir, R.A.; Sumari, S.M.; Ismail, Z.S.; Omar, N.A. Heavy Metals Composition of Indoor Dust in Nursery Schools Building. Procedia Soc. Behav. Sci. 2012, 38, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, Y.; Bot, B.L.E.; Glorennec, P. House-dust metal content and bioaccessibility: A review. Eur. J. Mineral. 2010, 22, 629–637. [Google Scholar] [CrossRef]
- Fantke, P.; Aylward, L.; Bare, J.; Chiu, W.A.; Dodson, R.; Dwyer, R.; Ernstoff, A.; Howard, B.; Jantunen, M.; Jolliet, O.; et al. Advancements in Life Cycle Human Exposure and Toxicity Characterization. Environ. Health Perspect. 2018, 126, 125001. [Google Scholar] [CrossRef]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, W. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China. Atmos. Res. 2008, 89, 289–297. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Satsangi, P.G.; Masih, J.; Taneja, A. Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci. Total Environ. 2009, 407, 6196–6204. [Google Scholar] [CrossRef]
- Pey, J.; Querol, X.; Alastuey, A. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmos. Environ. 2010, 44, 1587–1596. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Fowler, B.A.; Prusiewicz, C.M.; Nordberg, M. Metal Toxicology in Developing Countries, 4th ed.; Elsevier: London, UK, 2014; Volume 1. [Google Scholar]
- Buczyńska, A.J.; Krata, A.; Van Grieken, R.; Brown, A.; Polezer, G.; De Wael, K.; Potgieter-Vermaak, S. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total Environ. 2014, 490, 134–143. [Google Scholar] [CrossRef]
- Giorio, C.; Tapparo, A.; Scapellato, M.L.; Carrieri, M.; Apostoli, P.; Bartolucci, G.B. Field comparison of a personal cascade impactor sampler, an optical particle counter and CEN-EU standard methods for PM10, PM2.5 and PM1 measurement in urban environment. J. Aerosol Sci. 2013, 65, 111–120. [Google Scholar] [CrossRef]
- Salvador, P.; Almeida, S.M.; Cardoso, J.; Almeida-Silva, M.; Nunes, T.; Cerqueira, M.; Alves, C.; Reis, M.A.; Chaves, P.C.; Artinano, B.; et al. Composition and origin of PM10 in Cape Verde: Characterization of long-range transport episodes. Atmos. Environ. 2016, 127, 326–339. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Sanchez-Rodas, D.; Sanchez De La Campa, A.; Oliveira, V.; De La Rosa, J. Health implications of the distribution of arsenic species in airborne particulate matter. J. Inorg. Biochem. 2012, 108, 112–114. [Google Scholar] [CrossRef]
- Schleicher, N.J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Temporal variability of trace metal mobility of urban particulate matter from Beijing—A contribution to health impact assessments of aerosols. Atmos. Environ. 2011, 45, 7248–7265. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E. Evaluation of Forms in Which Occur Selected Trace Elements in Suspended Dust (PM10) and Respirable Fraction (PM2.5) in the Surroundings of Coal-Fired Power Plants and Coking Plants in the Non-Heating Season; Publishing House of Silesian University of Technology: Gliwice, Poland, 2016. [Google Scholar]
- Richter, P.; Griño, P.; Ahumada, I.; Giordano, A. Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos. Environ. 2007, 41, 6729–6738. [Google Scholar] [CrossRef]
Concentrations | Outdoor | Indoor | ||
---|---|---|---|---|
Urban | Rural | Urban | Rural | |
PM1, μg/m3 | 20.0 ± 2.4 | 9.5 ± 4.5 | 51.2 ± 11.4 | 45.1 ± 16.2 |
Cd, ng/m3 | 1.9 ± 0.2 | 0.6 ± 0.3 | 9.1 ± 1.0 | 9.4 ± 1.0 |
Cr, ng/m3 | 27.4 ± 7.4 | 15.2 ± 0.5 | 129.1 ± 50.3 | 219.0 ± 12.4 |
Mn, ng/m3 | 11.8 ± 3.9 | 6.6 ± 3.6 | 14.4 ± 3.3 | 12.0 ± 4.9 |
Ni, ng/m3 | 5.5 ± 1.9 | 2.2 ± 0.9 | 10.6 ± 3.3 | 6.2 ± 4.4 |
Pb, ng/m3 | 74.0 ± 7.6 | 15.1 ± 27.7 | 21.2 ± 8.4 | 12.6 ± 8.4 |
Sb, ng/m3 | 1.8 ± 0.6 | 1.0 ± 0.8 | 1.1 ± 0.4 | 0.3 ± 0.3 |
Se, ng/m3 | 1.6 ± 2.7 | 3.6 ± 0.5 | 0.8 ± 0.4 | 0.4 ± 0.4 |
Trace | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
---|---|---|---|---|---|---|
Elements | Power plants | Coking plants | ||||
Cd | 0.91 | −0.19 | 0.01 | 0.62 | 0.68 | 0.29 |
Cr | −0.06 | 0.99 | 0.09 | 0.97 | 0.18 | 0.14 |
Mn | 0.96 | 0.22 | −0.01 | 0.11 | 0.03 | 0.98 |
Ni | −0.07 | 0.10 | 0.99 | 0.91 | 0.36 | 0.05 |
Pb | 0.76 | −0.55 | −0.08 | 0.53 | 0.67 | 0.38 |
Sb | 0.86 | −0.14 | −0.24 | −0.01 | 0.97 | −0.08 |
Se | −0.04 | 0.99 | 0.06 | −0.99 | 0.06 | −0.09 |
% variance | 43.8 | 34.0 | 15.0 | 48.8 | 29.1 | 17.6 |
Outdoor (Power and coking plants) | Indoor (Preschools) | |||||
Cd | 0.69 | 0.61 | 0.29 | −0.29 | 0.91 | 0.04 |
Cr | 0.12 | 0.92 | −0.26 | −0.94 | 0.16 | −0.22 |
Mn | 0.60 | 0.34 | 0.17 | 0.02 | 0.71 | 0.61 |
Ni | 0.08 | 0.87 | 0.27 | 0.11 | 0.03 | 0.97 |
Pb | 0.66 | 0.57 | 0.32 | 0.88 | −0.08 | −0.05 |
Sb | 0.90 | −0.06 | 0.08 | 0.81 | 0.42 | 0.03 |
Se | −0.17 | −0.01 | −0.97 | 0.49 | 0.79 | −0.02 |
% variance | 30.7 | 34.4 | 18.6 | 37.7 | 30.8 | 19.5 |
PM Fractions | Outdoor | Indoor |
---|---|---|
PM1 | 10.8 ± 5.6 | 47.8 ± 13.8 |
PM2.5 | 14.5 ± 5.6 | 63.7 ± 19.2 |
PM10 | 18.8 ± 5.9 | 91.2 ± 24.2 |
TSP | 22.0 ± 6.4 | 108.5 ± 29.1 |
PM size ratios | ||
PM1/PM2.5 | 0.74 (0.38−0.89) | 0.75 (0.66−0.84) |
PM1/PM10 | 0.57 (0.21−0.80) | 0.52 (0.41−0.63) |
PM1/TSP | 0.49 (0.16−0.73) | 0.44 (0.33−0.54) |
PM2.5/PM10 | 0.77 (0.55−0.86) | 0.84 (0.62−0.78) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainka, A.; Zajusz-Zubek, E. PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere 2019, 10, 662. https://doi.org/10.3390/atmos10110662
Mainka A, Zajusz-Zubek E. PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere. 2019; 10(11):662. https://doi.org/10.3390/atmos10110662
Chicago/Turabian StyleMainka, Anna, and Elwira Zajusz-Zubek. 2019. "PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland" Atmosphere 10, no. 11: 662. https://doi.org/10.3390/atmos10110662
APA StyleMainka, A., & Zajusz-Zubek, E. (2019). PM1 in Ambient and Indoor Air—Urban and Rural Areas in the Upper Silesian Region, Poland. Atmosphere, 10(11), 662. https://doi.org/10.3390/atmos10110662