The Impact of the G6PD Gene Mutations in Patients with Chronic Hepatitis C Infection Treated with Direct-Acting Antivirals: A Multicenter Observational Study
Highlights
- We fill a knowledge gap regarding the direct-acting antivirals (DAAs) that are currently used to treat hepatitis C (HCV) infection.
- The drugs were tested on a large set of patients with HCV with documented concomitant glucose-6-phosphate dehydrogenase deficiency (G6PDd).
- Our approach confirms that using DAAs to treat both patients with HCV and patients with G6PDd is safe.
- Our study suggests that in common clinical practice, it is not necessary to screen for the presence of G6PDd in subjects who are candidates for HCV treatment and/or to perform additional testing in patients who have an established G6PDd diagnosis.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perazzo, H.; Castro, R.; Luz, P.M.; Banholi, M.; Goldenzon, R.V.; Cardoso, S.W.; Grinsztejn, B.; Veloso, V.G. Effectiveness of Generic Direct-Acting Agents for the Treatment of Hepatitis C: Systematic Review and Meta-Analysis. Bull. World Health Organ. 2020, 98, 188K–197K. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, V.; Banzi, R.; Cariani, E.; Chester, J.; Villa, E.; D’Amico, R.; Bertele’, V.; Trenti, T. New Direct-Acting Antivirals for the Treatment of Patients with Hepatitis C Virus Infection: A Systematic Review of Randomized Controlled Trials. J. Clin. Exp. Hepatol. 2019, 9, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ahn, S.B.; Yim, S.Y.; An, J.; Jun, D.W.; Ko, M.J.; Park, D.A.; Yoo, J.J. Efficacy and Safety of Direct-Acting Antiviral Therapy for Hepatitis C Virus in Elderly Patients (≥65 Years Old): A Systematic Review and Meta-Analysis. J. Viral Hepat. 2022, 29, 496–517. [Google Scholar] [CrossRef]
- Dobrowolska, K.; Brzdęk, M.; Rzymski, P.; Flisiak, R.; Pawłowska, M.; Janczura, J.; Brzdęk, K.; Zarębska-Michaluk, D. Revolutionizing Hepatitis C Treatment: Next-Gen Direct-Acting Antivirals. Expert. Opin. Pharmacother. 2024, 25, 833–852. [Google Scholar] [CrossRef] [PubMed]
- Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-Phosphate Dehydrogenase Deficiency. Blood 2021, 136, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Nkhoma, E.T.; Poole, C.; Vannappagari, V.; Hall, S.A.; Beutler, E. The Global Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency: A Systematic Review and Meta-Analysis. Blood Cells Mol. Dis. 2009, 42, 267–278. [Google Scholar] [CrossRef]
- Alangari, A.S.; El-Metwally, A.A.; Alanazi, A.; Al Khateeb, B.F.; Al Kadri, H.M.; Alshdoukhi, I.F.; Aldubikhi, A.I.; Alruwaili, M.; Alshahrani, A. Epidemiology of Glucose-6-Phosphate Dehydrogenase Deficiency in Arab Countries: Insights from a Systematic Review. J. Clin. Med. 2023, 12, 6648. [Google Scholar] [CrossRef]
- Kassahun, W.; Tunta, A.; Abera, A.; Shiferaw, M. Glucose-6-Phosphate Dehydrogenase Deficiency among Neonates with Jaundice in Africa; Systematic Review and Meta-Analysis. Heliyon 2023, 9, e18437. [Google Scholar] [CrossRef]
- Luzzatto, L.; Arese, P. Favism and Glucose-6-Phosphate Dehydrogenase Deficiency. N. Engl. J. Med. 2018, 378, 60–71. [Google Scholar] [CrossRef]
- Luzzatto, L.; Nannelli, C.; Notaro, R. Glucose-6-Phosphate Dehydrogenase Deficiency. Hematol. Oncol. Clin. North. Am. 2016, 30, 373–393. [Google Scholar] [CrossRef]
- Grattagliano, I.; Russmann, S.; Palmieri, V.O.; Jüni, P.; Bihl, F.; Portincasa, P.; Palasciano, G.; Lauterburg, B.H. Low Membrane Protein Sulfhydrils but Not G6PD Deficiency Predict Ribavirin-Induced Hemolysis in Hepatitis, C. Hepatology 2004, 39, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, C.; Serra, G.; Cauli, C.; Chessa, L.; Balestrieri, A.; Farci, P. Treatment of Chronic Hepatitis C in Patients with Glucose-6-Phosphate Dehydrogenase Deficiency: Is Ribavirin Harmful? Blood 2006, 107, 3409–3410. [Google Scholar] [CrossRef] [PubMed]
- Demelia, L.; Civolani, A.; Murgia, D.; Murru, A.; Sorbello, O.; Rizzetto, M. Tolerability of Peg Interferon-A2b and Ribavirin Therapy in Patients with Chronic Hepatitis C and Glucose-6-Phosphate Dehydrogenase Deficiency. J. Hepatol. 2007, 46, 171–173. [Google Scholar] [CrossRef]
- Shiha, G.; Soliman, R.; ElBasiony, M.; Mikhail, N.N.H. Ledipasvir 90 Mg/Sofosbuvir 400 Mg for 12 Weeks for the Treatment of CHC Genotype 4 Adolescents. In Proceedings of the 27th Annual Conference of the Asian Pacific Association for the Study of the Liver (APASL), New Delhi, India, 14-18 March 2018; pp. S658–S659. [Google Scholar]
- Blume, K.G.; Kaplan, J.C.; Kaplan, J.C.; Ramot, B.; Ramot, B.; Valentine, W.N. International Committee for Standardization in Haematology: Recommended Screening Test for Glucose--6--Phosphate Dehydrogenase (G--6--PD) Deficiency. Br. J. Haematol. 1979, 43, 465–467. [Google Scholar]
- Paleari, R.; Ceriotti, F.; Bonini, P.A.; Mosca, A. Standardization Problems Relevant to Quantitative Laboratory Methods for Glucose 6-Phosphate Dehydrogenase Deficiency Detection. G. Ital. Chim. Clin. 1990, 15, 191–198. [Google Scholar]
- Mosca, A.; Paderi, M.; Sanna, A.; Paleari, R.; Cao, A.; Galanello, R. Preliminary Experience with the Differential PH Technique for Glucose-6-Phosphate Dehydrogenase (G6PD) Measurement in Whole Blood: Application to an Area with High Prevalence of Thalassaemia and G6PD Deficiency. Haematologica 1990, 75, 397–399. [Google Scholar]
- Betke, K.; Brewer, G.J.; Kirkman, H.N.; Luzzato, L.; Motulsky, A.G.; Ramot, B.; Siniscalco, M.; Beutler, E.; Standley, C.C. Standardization of Procedures for the Study of Glucose-6-Phosphate Dehydrogenase. Report of a WHO Scientific Group. World Health Organ. Tech. Rep. Ser. 1967, 366, 1–56. [Google Scholar]
- Maffi, D.; Caforio, M.P.; Pasquino, M.T.; Caprari, P. Glucose-6-Phosphate Dehydrogenase Deficiency and Drugs (Report 09/47). In Italian National Institute of Health Reports; Italian National Institute of Health: Rome, Italy, 2009; pp. 1–31. [Google Scholar]
- Nannelli, C.; Bosman, A.; Cunningham, J.; Dugué, P.A.; Luzzatto, L. Genetic Variants Causing G6PD Deficiency: Clinical and Biochemical Data Support New WHO Classification. Br. J. Haematol. 2023, 202, 1024–1032. [Google Scholar] [CrossRef]
- Ho, H.Y.; Cheng, M.L.; Chiu, D.T.Y. Glucose-6-Phosphate Dehydrogenase-beyond the Realm of Red Cell Biology. Free Radic. Res. 2014, 48, 1028–1048. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Fiorelli, G. Glucose-6-Phosphate Dehydrogenase Deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef]
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.H.; Negro, F.; et al. Global Prevalence and Genotype Distribution of Hepatitis C Virus Infection in 2015: A Modelling Study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Kowdley, K.V. Hematologic Side Effects of Interferon and Ribavirin Therapy. J. Clin. Gastroenterol. 2005, 39, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Saab, S.; Martin, P. Hemolytic Anemia and the Treatment of Chronic Hepatitis C: Editorial. J. Clin. Gastroenterol. 1999, 28, 289–290. [Google Scholar] [CrossRef]
- De Franceschi, L.; Fattovich, G.; Turrini, F.; Ayi, K.; Brugnara, C.; Manzato, F.; Noventa, F.; Stanzial, A.M.; Solero, P.; Corrocher, R. Hemolytic Anemia Induced by Ribavirin Therapy in Patients with Chronic Hepatitis C Virus Infection: Role of Membrane Oxidative Damage. Hepatology 2000, 31, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.S.; Wasserman, R.; Brooks, L.; Ball, L.; Gish, R. Changes in Haemoglobin during Interferon alpha -2b plus Ribavirin Combination Therapy for Chronic Hepatitis C Virus Infection. J. Viral Hepat. 2004, 11, 243–250. [Google Scholar] [CrossRef]
- De-la-Serna-Higuera, C.; Barcena-Marugan, R.; Sanz-De-Villalobos, E. Hemolytic Anemia Secondary to alpha-Interferon Treatment in a Patient with Chronic C Hepatitis. J. Clin. Gastroenterol. 1999, 28, 358–359. [Google Scholar] [CrossRef]
- Mac Nicholas, R.; Norris, S. Review Article: Optimizing SVR and Management of the Haematological Side Effects of Peginterferon/Ribavirin Antiviral Therapy for HCV—The Role of Epoetin, G-CSF and Novel Agents. Aliment. Pharmacol. Ther. 2010, 31, 929–937. [Google Scholar] [CrossRef]
- Ong, J.P.; Younossi, Z.M. Managing the Hematologic Side Effects of Antiviral Therapy for Chronic Hepatitis C: Anemia, Neutropenia, and Thrombocytopenia. Cleve Clin. J. Med. 2004, 71, S17–S21. [Google Scholar] [CrossRef]
- Itoh, Y.; Okanoue, T. Ribavirin-Induced Hemolytic Anemia in Chronic Hepatitis C Patients. J. Gastroenterol. 2004, 39, 704–705. [Google Scholar] [CrossRef]
- Bini, E.J.; Anand, B.S.; Aytaman, A.; Samanta, A.; Cordoba-Rellosa, I.; Nemchausky, B.; Trevino, H.H.; Mah’moud, M.A.; Weston, A.P.; Pimstone, N.R.; et al. Glucose-6-Phosphate Dehydrogenase Deficiency Is Associated with Severe Anemia during Interferon and Ribavirin Therapy. In Proceedings of the 56th Annual Meeting of the American Association for The Study of Liver Diseases (AASLD), San Francisco, CA, USA, 11-15 November 2005; p. 648A. [Google Scholar]
- Carcassi, U.E. The Interaction between beta-Thalassemia, G-6-PD Deficiency, and Favism. Ann. N. Y. Acad. Sci. 1974, 232, 297–305. [Google Scholar] [CrossRef]
- Coppola, R.C.; Masia, G.; Pradat, P.; Trepò, C.; Carboni, G.; Argiolas, F.; Rizzetto, M. Impact of Hepatitis C Virus Infection on Healthy Subjects on an Italian Island. J. Viral Hepat. 2000, 7, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Poordad, F.; McCone, J.; Bacon, B.R.; Bruno, S.; Manns, M.P.; Sulkowski, M.S.; Jacobson, I.M.; Reddy, K.R.; Goodman, Z.D.; Boparai, N.; et al. Boceprevir for Untreated Chronic HCV Genotype 1 Infection. N. Engl. J. Med. 2011, 364, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Bacon, B.R.; Gordon, S.C.; Lawitz, E.; Marcellin, P.; Vierling, J.M.; Zeuzem, S.; Poordad, F.; Goodman, Z.D.; Sings, H.L.; Boparai, N.; et al. Boceprevir for Previously Treated Chronic HCV Genotype 1 Infection. N. Engl. J. Med. 2011, 364, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, I.M.; McHutchison, J.G.; Dusheiko, G.; Di Bisceglie, A.M.; Reddy, K.R.; Bzowej, N.H.; Marcellin, P.; Muir, A.J.; Ferenci, P.; Flisiak, R.; et al. Telaprevir for Previously Untreated Chronic Hepatitis C Virus Infection. N. Engl. J. Med. 2011, 364, 2405–2416. [Google Scholar] [CrossRef]
- Zeuzem, S.; Andreone, P.; Pol, S.; Lawitz, E.; Diago, M.; Roberts, S.; Focaccia, R.; Younossi, Z.; Foster, G.R.; Horban, A.; et al. Telaprevir for Retreatment of HCV Infection. N. Engl. J. Med. 2011, 364, 2417–2428. [Google Scholar] [CrossRef]
- Vaidya, A.; Perry, C.M. Simeprevir: First Global Approval. Drugs 2013, 73, 2093–2106. [Google Scholar] [CrossRef]
- Cha, A.; Budovich, A. Sofosbuvir: A New Oral Once-Daily Agent for the Treatment of Hepatitis C Virus Infection. Pharm. Ther. 2014, 39, 345–352. [Google Scholar]
- Afdhal, N.; Zeuzem, S.; Kwo, P.; Chojkier, M.; Gitlin, N.; Puoti, M.; Romero-Gomez, M.; Zarski, J.-P.; Agarwal, K.; Buggisch, P.; et al. Ledipasvir and Sofosbuvir for Untreated HCV Genotype 1 Infection. N. Engl. J. Med. 2014, 370, 1889–1898. [Google Scholar] [CrossRef]
- Afdhal, N.; Reddy, K.R.; Nelson, D.R.; Lawitz, E.; Gordon, S.C.; Schiff, E.; Nahass, R.; Ghalib, R.; Gitlin, N.; Herring, R.; et al. Ledipasvir and Sofosbuvir for Previously Treated HCV Genotype 1 Infection. N. Engl. J. Med. 2014, 370, 1483–1493. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Gordon, S.C.; Reddy, K.R.; Rossaro, L.; Bernstein, D.E.; Lawitz, E.; Shiffman, M.L.; Schiff, E.; Ghalib, R.; Ryan, M.; et al. Ledipasvir and Sofosbuvir for 8 or 12 Weeks for Chronic HCV without Cirrhosis. N. Engl. J. Med. 2014, 370, 1879–1888. [Google Scholar] [CrossRef]
- Ferenci, P.; Bernstein, D.; Lalezari, J.; Cohen, D.; Luo, Y.; Cooper, C.; Tam, E.; Marinho, R.T.; Tsai, N.; Nyberg, A.; et al. ABT-450/r–Ombitasvir and Dasabuvir with or without Ribavirin for HCV. N. Engl. J. Med. 2014, 370, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Hézode, C.; Hirschfield, G.M.; Ghesquiere, W.; Sievert, W.; Rodriguez-Torres, M.; Shafran, S.D.; Thuluvath, P.J.; Tatum, H.A.; Waked, I.; Esmat, G.; et al. Daclatasvir plus Peginterferon Alfa and Ribavirin for Treatment-Naive Chronic Hepatitis C Genotype 1 or 4 Infection: A Randomised Study. Gut 2015, 64, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Dore, G.J.; Lawitz, E.; Hézode, C.; Shafran, S.D.; Ramji, A.; Tatum, H.A.; Taliani, G.; Tran, A.; Brunetto, M.R.; Zaltron, S.; et al. Daclatasvir plus Peginterferon and Ribavirin Is Noninferior to Peginterferon and Ribavirin Alone, and Reduces the Duration of Treatment for HCV Genotype 2 or 3 Infection. Gastroenterology 2015, 148, 355.e1–366.e1. [Google Scholar] [CrossRef] [PubMed]
- Geddawy, A.; Ibrahim, Y.F.; Elbahie, N.M.; Ibrahim, M.A. Direct Acting Anti-Hepatitis C Virus Drugs: Clinical Pharmacology and Future Direction. J. Transl. Int. Med. 2017, 5, 8–17. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL Recommendations on Treatment of Hepatitis C: Final Update of the Series☆. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Sarrazin, C. Treatment Failure with DAA Therapy: Importance of Resistance. J. Hepatol. 2021, 74, 1472–1482. [Google Scholar] [CrossRef]
- Ridruejo, E.; Garcia-Agudo, R.; Mendizabal, M.; Aoufi-Rabih, S.; Dixit, V.; Silva, M.; Fabrizi, F. Efficacy and Safety of Direct-Acting Antiviral Agents for HCV in Mild-to-Moderate Chronic Kidney Disease. Nefrología 2020, 40, 46–52. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Ma, S.J.; Xiong, Y.H.; Fan, X.G. Efficacy and Safety of Direct Acting Antiviral Regimens for Hepatitis C Virus and Human Immunodeficiency Virus Co-Infection: Systematic Review and Network Meta-Analysis. J. Gastroenterol. Hepatol. 2020, 35, 1477–1487. [Google Scholar] [CrossRef]
- Gualerzi, A.; Bellan, M.; Smirne, C.; Tran Minh, M.; Rigamonti, C.; Burlone, M.E.; Bonometti, R.; Bianco, S.; Re, A.; Favretto, S.; et al. Improvement of Insulin Sensitivity in Diabetic and Non Diabetic Patients with Chronic Hepatitis C Treated with Direct Antiviral Agents. PLoS ONE 2018, 13, e0209216. [Google Scholar] [CrossRef]
- Smirne, C.; D’Avolio, A.; Bellan, M.; Gualerzi, A.; Crobu, M.G.; Pirisi, M. Sofosbuvir-Based Therapies in Genotype 2 Hepatitis C Virus Cirrhosis: A Real-Life Experience with Focus on Ribavirin Dose. Pharmacol. Res. Perspect. 2021, 9, e00811. [Google Scholar] [CrossRef] [PubMed]
- Smirne, C.; Carbone, R.; Colletta, C.; Scivetti, P.; Sainaghi, P.P. Efficacy and Safety of Sofosbuvir and Ribavirin in an Italian Cohort of HCV Genotype 2 Elderly Cirrhotic Patients. Eurasian J. Med. 2022, 54, 113–120. [Google Scholar] [CrossRef]
- Burlone, M.E.; Fangazio, S.; Croce, A.; Ceriani, E.; Rapetti, R.; Rigamonti, C.; Smirne, C.; Tonello, S.; Ravanini, P.; Minisini, R.; et al. Response Rates to Direct Antiviral Agents among Hepatitis C Virus Infected Patients Who Develop Hepatocellular Carcinoma Following Direct Antiviral Agents Treatment. Hepatoma Res. 2020, 6, 3. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Abdel-Aziz, M.M.; Khafaga, R.H.M.; Hafez, H.A.; Kamel, M.A.; Shaker, S.A. The Pre-Conception Maternal Exposure to Sofosbuvir Affects the Mitochondrial Biogenesis in Prenatal Fetal Tissues: Experimental Study on Rats. Mol. Med. 2023, 29, 71. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.A.; Awadalla, E.A.; Amin, Y.A.; Fouad, S.S.; Ahmed, M.A.E.B.; Hassan, M.H.; Abdel-Kahaar, E.; Abdel-Aziz, R.H. The Deleterious Effects of Sofosbuvir and Ribavirin (Antiviral Drugs against Hepatitis C Virus) on Different Body Systems in Male Albino Rats Regarding Reproductive, Hematological, Biochemical, Hepatic, and Renal Profiles and Histopathological Changes. Sci. Rep. 2024, 14, 5682. [Google Scholar] [CrossRef] [PubMed]
- Elarabany, N.; Eltamtame, S.; Elbakry, K.; Abdallah, G. Effects of Sofosbuvir and Ribavirin on Some Haematological and Biochemical Parameters in Normal Rats. Egypt. J. Zool. 2017, 68, 181–196. [Google Scholar] [CrossRef]
- Rendell, J.M.; Merritt, R.K.; Geddes, J. Incentives and Disincentives to Participation by Clinicians in Randomised Controlled Trials. Cochrane Database Syst. Rev. 2007, 2007, MR000021. [Google Scholar] [CrossRef]
- Turner, L.; Shamseer, L.; Altman, D.G.; Weeks, L.; Peters, J.; Kober, T.; Dias, S.; Schulz, K.F.; Plint, A.C.; Moher, D. Consolidated Standards of Reporting Trials (CONSORT) and the Completeness of Reporting of Randomised Controlled Trials (RCTs) Published in Medical Journals. Cochrane Database Syst. Rev. 2012, 11, MR000030. [Google Scholar] [CrossRef]
- Djulbegovic, B.; Kumar, A.; Glasziou, P.P.; Perera, R.; Reljic, T.; Dent, L.; Raftery, J.; Johansen, M.; Di Tanna, G.L.; Miladinovic, B.; et al. New Treatments Compared to Established Treatments in Randomized Trials. Cochrane Database Syst. Rev. 2012, 10, MR000024. [Google Scholar] [CrossRef]
- Allen, E.N.; Chandler, C.I.R.; Mandimika, N.; Leisegang, C.; Barnes, K. Eliciting Adverse Effects Data from Participants in Clinical Trials. Cochrane Database of Systematic Reviews 2018, 1, MR000039. [Google Scholar] [CrossRef]
- Marusic, A.; Wager, E.; Utrobicic, A.; Rothstein, H.R.; Sambunjak, D. Interventions to Prevent Misconduct and Promote Integrity in Research and Publication. Cochrane Database Syst. Rev. 2016, 4, MR000038. [Google Scholar] [CrossRef] [PubMed]
- Klatte, K.; Pauli-Magnus, C.; Love, S.B.; Sydes, M.R.; Benkert, P.; Bruni, N.; Ewald, H.; Arnaiz Jimenez, P.; Bonde, M.M.; Briel, M. Monitoring Strategies for Clinical Intervention Studies. Cochrane Database Syst. Rev. 2021, 12, MR000051. [Google Scholar] [CrossRef] [PubMed]
- Treweek, S.; Pitkethly, M.; Cook, J.; Fraser, C.; Mitchell, E.; Sullivan, F.; Jackson, C.; Taskila, T.K.; Gardner, H. Strategies to Improve Recruitment to Randomised Trials. Cochrane Database Syst. Rev. 2018, 2, MR000013. [Google Scholar] [CrossRef] [PubMed]
Variable | Local Laboratory NR | |
---|---|---|
Age, years | 58 (48–68) | - |
Gender, n (M, F) | 26 (68), 12 (32) | - |
HCV genotype, n (1a, 1b, 2, 3) | 4 (11), 11 (29), 15 (39), 8 (21) | - |
HCV-RNA, ×103 IU/mL | 1818 (972–2554) | negative |
Liver elastography, KPa | 7.4 (4.8–10.3) | ≤5.0 |
Hepatic cirrhosis, n | 8 (21) | - |
MELD, score | 8 (6–10) | ≤6.0 |
Hemoglobin, g/L | 145 (127–151) | 115–157 |
Reticulocytes, % | 1.20 (1.00–1.40) | 0.50–2.17 |
G6PD activity (37 °C), IU/gHb | 1.38 (0.30–1.84) | - |
Males, IU/gHb | 1.32 (0.80–1.94) | ≥9.52 |
Females, IU/gHb | 1.37 (0.62–1.82) | ≥10.22 |
G6PD activity (37 °C), % | 13.86 (8.40–17.99) | 100 |
Males, % | 12.95 (7.51–20.37) | 100 |
Females, % | 13.44 (6.06–17.60) | 100 |
AST, IU/L | 36 (32–53) | 0–40 |
ALT, IU/L | 47 (24–81) | 0–40 |
Total bilirubin, mg/dL | 1.20 (0.95–2.10) | 0.30–1.20 |
Indirect bilirubin, mg/dL | 0.82 (0.45–1.60) | 0.30–0.95 |
Creatinine, mg/dL | 0.77 (0.63–0.85) | 0.60–1.10 |
INR, Units | 1.02 (0.97–1.02) | 0.80–1.20 |
Previously treated with standard IFN + RBV, n | 3 (8) | - |
Previously treated with PEG-IFN + RBV, n | 8 (21) | - |
Administered DAA regimens, n | 40 (100) | - |
LDV/SOF, n 1 | 7 (18) | - |
OMB/PAR/RIT + DAS | 4 (10) | - |
GRZ/ELB | 1 (3) | - |
SOF/DCL | 2 (5) | - |
SOF/VEL | 13 (32) | - |
GLE/PIB | 11 (27) | - |
SOF/VEL/VOX 2 | 2 (5) | - |
Therapy duration, weeks | 12 (12–12) | - |
Post-treatment virological outcome 3 | ||
SVR, n | 37 (97) | - |
Relapse, n | 1 (3) | - |
Molecule | NS Protein Target | Daily Dosage (mg) | DAA Treatment—Recommended Combination Regimens | Tested in This Study 1 |
---|---|---|---|---|
First-generation DAA | ||||
Protease inhibitors | ||||
BOC | NS3 | 2400 | PEG-IFN + RBV + BOC | ✔ 2 |
TEL | NS3/4A | 2250 | PEG-IFN + RBV + TEL | ✔ 2 |
Second-generation DAA | ||||
NS5A polymerase inhibitors | ||||
LDV | NS5A | 90 | LDV/SOF ± RBV | ✔ |
DCL | NS5A | 60 | DCL + SOF ± RBV | ✔ |
OMB | NS5A | 25 | OMB/PAR/RIT + DAS ± RBV | ✔ |
NS5B polymerase inhibitors | ||||
DAS | NS5B | 500 | OMB/PAR/RIT + DAS ± RBV | ✔ |
SOF | NS5B | 400 | PEG-IFN + RBV + SOF 3 SOF + RBV 3 | |
Protease Inhibitors | ||||
PAR | NS3/4A | 150 | OMB/PAR/RIT + DAS ± RBV | ✔ |
SIM | NS3/4A | 150 | PEG-IFN + RBV + SIM SOF + SIM ± RBV | |
BMS-650032 4 | NS3 | 200 | BMS-650032 + DCL PEG-IFN + RBV + BMS-650032 + DCL | |
Third-generation DAA | ||||
NS5A polymerase inhibitors | ||||
VEL | NS5A | 100 | SOF/VEL ± RBV SOF/VEL/VOX | ✔ ✔ |
PIB | NS5A | 120 | GLE/PIB | ✔ |
ELB | NS5A | 50 | EBR/GZR ± RBV | ✔ |
Protease Inhibitors | ||||
GRZ | NS3/4A | 100 | EBR/GZR ± RBV | ✔ |
VOX | NS3/4A | 100 | SOF/VEL/VOX | ✔ |
GLE | NS3/4A | 300 | GLE/PIB | ✔ |
TW4 | TW8 1 | TW12 2 | ET | FUP4 | FUP12 | FUP24 3 | |
---|---|---|---|---|---|---|---|
Hemoglobin, g/L | 141 (124–152) | 143 (127–151) | 140 (122–152) | 146 (128–154) | 143 (127–151) | 141 (126–152) | 140 (127–150) |
Reticulocyte, % | 1.1 (0.9–1.4) | 1.0 (1.0–1.5) | 1.2 (1.1–1.5) | 1.1 (1.0–1.4) | 1.2 (1.1–1.3) | 1.0 (1.0–1.4) | 1.1 (0.9–1.4) |
Indirect bilirubin, mg/dL | 0.85 (0.49–1.65) | 0.90 (0.45–1.61) | 0.92 (0.51–1.62) | 0.89 (0.49–1.62) | 0.87 (0.47–1.59) | 0.84 (0.45–1.60) | 0.86 (0.44–1.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirne, C.; Crobu, M.G.; Gerevini, C.; Berton, A.M.; Rapetti, R.; Pasini, B.; Ravanini, P.; Pirisi, M. The Impact of the G6PD Gene Mutations in Patients with Chronic Hepatitis C Infection Treated with Direct-Acting Antivirals: A Multicenter Observational Study. Genes 2024, 15, 1116. https://doi.org/10.3390/genes15091116
Smirne C, Crobu MG, Gerevini C, Berton AM, Rapetti R, Pasini B, Ravanini P, Pirisi M. The Impact of the G6PD Gene Mutations in Patients with Chronic Hepatitis C Infection Treated with Direct-Acting Antivirals: A Multicenter Observational Study. Genes. 2024; 15(9):1116. https://doi.org/10.3390/genes15091116
Chicago/Turabian StyleSmirne, Carlo, Maria Grazia Crobu, Chiara Gerevini, Alessandro Maria Berton, Rachele Rapetti, Barbara Pasini, Paolo Ravanini, and Mario Pirisi. 2024. "The Impact of the G6PD Gene Mutations in Patients with Chronic Hepatitis C Infection Treated with Direct-Acting Antivirals: A Multicenter Observational Study" Genes 15, no. 9: 1116. https://doi.org/10.3390/genes15091116
APA StyleSmirne, C., Crobu, M. G., Gerevini, C., Berton, A. M., Rapetti, R., Pasini, B., Ravanini, P., & Pirisi, M. (2024). The Impact of the G6PD Gene Mutations in Patients with Chronic Hepatitis C Infection Treated with Direct-Acting Antivirals: A Multicenter Observational Study. Genes, 15(9), 1116. https://doi.org/10.3390/genes15091116