Previous Issue
Volume 15, May
 
 

Genes, Volume 15, Issue 6 (June 2024) – 145 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2948 KiB  
Article
Genome-Wide Identification and Expression Profiling of the α-Amylase (AMY) Gene Family in Potato
by Yudan Duan and Liping Jin
Genes 2024, 15(6), 793; https://doi.org/10.3390/genes15060793 (registering DOI) - 17 Jun 2024
Abstract
Starch degradation provides energy and signaling molecules for plant growth, development, defense, and stress response. α-amylase (AMY) is one of the most important enzymes in this process. Potato tubers are rich in starch, and the hydrolysis of starch into sugar negatively [...] Read more.
Starch degradation provides energy and signaling molecules for plant growth, development, defense, and stress response. α-amylase (AMY) is one of the most important enzymes in this process. Potato tubers are rich in starch, and the hydrolysis of starch into sugar negatively impacts the frying quality of potato. Despite its importance, the AMY gene family has not been fully explored in potatoes. Here, we performed a detailed analysis of the StAMY gene family to determine its role in potato. Twenty StAMY genes were identified across the potato genome and were divided into three subgroups. The promoters of StAMY genes contained an array of cis-acting elements involved in growth and development, phytohormone signaling, and stress and defense responses. StAMY8, StAMY9, StAMY12, and StAMY20 were specifically expressed in mature tubers. Different StAMY gene family members tended to be upregulated in response to β-aminobutyric acid (BABA), Phytophthora infestans (P. infestans), benzothiadiazole (BTH), heat, salt, and drought stress. In addition, different StAMY gene family members tended to be responsive to abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA3), and 6-benzylaminopurine (BAP) treatment. These results suggest that StAMY gene family members may be involved in starch and sugar metabolism, defense, stress response, and phytohormone signaling. The results of this study may be applicable to other starchy crops and lay a foundation for further research on the functions and regulatory mechanisms of AMY genes. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1202 KiB  
Article
Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database
by Kyoka Kawabata, Hinano Nishikubo, Saki Kanei, Rika Aoyama, Yuki Tsukada, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Yurie Yamamoto, Qiang Wang, Zhonglin Zhu, Canfeng Fan and Masakazu Yashiro
Genes 2024, 15(6), 792; https://doi.org/10.3390/genes15060792 (registering DOI) - 17 Jun 2024
Abstract
Background: Breast cancer (BC) has the highest morbidity rate and the second-highest mortality rate of all cancers among women. Recently, multi-cancer genome profiling (multi-CGP) tests have become clinically available. In this study, we aimed to clarify the significance of multi-CGP testing of BC [...] Read more.
Background: Breast cancer (BC) has the highest morbidity rate and the second-highest mortality rate of all cancers among women. Recently, multi-cancer genome profiling (multi-CGP) tests have become clinically available. In this study, we aimed to clarify the significance of multi-CGP testing of BC by using the large clinical dataset from The Center for Cancer Genomics and Advanced Therapeutics (C-CAT) profiling database in Japan. Materials and Methods: A total of 3744 BC cases were extracted from the C-CAT database, which enrolled 60,250 patients between June 2019 and October 2023. Of the 3744 BC cases, a total of 3326 cases for which the C-CAT included information on ER, PR, and HER2 status were classified into four subtypes, including TNBC, HR+/HER2−, HR+/HER2+, and HR−/HER2+. Comparisons between groups were performed by the χ2 test or Fisher’s exact test using EZR. Kaplan–Meier curves were created using the log-rank test. Results: Of all 3326 cases analyzed, 1114 (33.5%) were TNBC cases, HR+/HER2− accounted for 1787 cases (53.7%), HR+/HER2+ for 260 cases (7.8%), and HR−/HER2+ for 165 cases (5.0%). Genetic abnormalities were most frequently detected in TP53 (58.0%), PIK3CA (35.5%), MYC (18.7%), FGF19 (15.5%), and GATA3 (15.1%) across all BCs. The rate of TMB-High was 12.3%, and the rate of MSI-High was 0.3%, in all BC cases. Therapeutic drugs were proposed for patients with mutations in six genes: PIK3CA, ERBB2, PTEN, FGFR1, ESR1, and AKT1. The prognoses of HR+/HER2− cases were significantly (p = 0.044) better in the treated group than in the untreated group. Conclusions: These findings suggest that cancer gene panel testing is useful for HR+/HER2− cases. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 5599 KiB  
Article
SCAPER-Related Autosomal Recessive Retinitis Pigmentosa with Intellectual Disability: Confirming and Extending the Phenotypic Spectrum and Bioinformatics Analyses
by Rajech Sharkia, Abdelnaser Zalan, Amit Kessel, Wasif Al-Shareef, Hazar Zahalka, Holger Hengel, Ludger Schöls, Abdussalam Azem and Muhammad Mahajnah
Genes 2024, 15(6), 791; https://doi.org/10.3390/genes15060791 (registering DOI) - 16 Jun 2024
Viewed by 118
Abstract
Mutations in the gene SCAPER (S phase Cyclin A-Associated Protein residing in the Endoplasmic Reticulum) have recently been associated with retinitis pigmentosa (RP) and intellectual disability (ID). In 2011, a possible involvement of SCAPER in human diseases was discovered for the first time [...] Read more.
Mutations in the gene SCAPER (S phase Cyclin A-Associated Protein residing in the Endoplasmic Reticulum) have recently been associated with retinitis pigmentosa (RP) and intellectual disability (ID). In 2011, a possible involvement of SCAPER in human diseases was discovered for the first time due to the identification of a homozygous mutation causing ID in an Iranian family. Later, five studies were published in 2019 that described patients with autosomal recessive syndromic retinitis pigmentosa (arRP) accompanied by ID and attention-deficit/hyperactivity disorder (ADHD). This present study describes three patients from an Arab consanguineous family in Israel with similar clinical features of the SCAPER syndrome. In addition, new manifestations of ocular symptoms, nystagmus, glaucoma, and elevator palsy, were observed. Genetic testing of the patients and both parents via whole-exome sequencing revealed the homozygous mutation c.2023–2A>G in SCAPER. Phenotypic and genotypic descriptions for all available cases described in the literature including our current three cases (37 cases) were carried out, in addition to a bioinformatics analysis for all the genetic variants that was undertaken. Our study confirms and extends the clinical manifestations of SCAPER-related disorders. Full article
(This article belongs to the Special Issue Variations of Rare Genetic Diseases)
Show Figures

Figure 1

12 pages, 3861 KiB  
Article
Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China
by Siqi Zhu, Naifan Zhang, Jie Zhang, Xinyue Shao, Yaqi Guo and Dawei Cai
Genes 2024, 15(6), 790; https://doi.org/10.3390/genes15060790 (registering DOI) - 15 Jun 2024
Viewed by 186
Abstract
This study analyzed ancient DNA from the remains of horses unearthed from the Shihuyao tombs. These were found to date from the Han and Tang Dynasties in Xinjiang (approximately 2200 to 1100 years ago). Two high-quality mitochondrial genomes were acquired and analyzed using [...] Read more.
This study analyzed ancient DNA from the remains of horses unearthed from the Shihuyao tombs. These were found to date from the Han and Tang Dynasties in Xinjiang (approximately 2200 to 1100 years ago). Two high-quality mitochondrial genomes were acquired and analyzed using next-generation sequencing. The genomes were split into two maternal haplogroups, B and D, according to a study that included ancient and contemporary samples from Eurasia. A close genetic affinity was observed between the horse of the Tang Dynasty and Akhal-Teke horses according to the primitive horse haplotype G1. Historical evidence suggests that the ancient Silk Road had a vital role in their dissemination. Additionally, the matrilineal history of the Akhal-Teke horse was accessed and suggested that the early domestication of the breed was for military purposes. Full article
Show Figures

Figure 1

13 pages, 241 KiB  
Article
Reverse Phenotyping after Whole-Exome Sequencing in Children with Developmental Delay/Intellectual Disability—An Exception or a Necessity?
by Nikola Ilic, Nina Maric, Ales Maver, Lluis Armengol, Ruzica Kravljanac, Jana Cirkovic, Jovana Krstic, Danijela Radivojevic, Sanja Cirkovic, Slavica Ostojic, Stasa Krasic, Aleksandra Paripovic, Vladislav Vukomanovic, Borut Peterlin, Gorica Maric and Adrijan Sarajlija
Genes 2024, 15(6), 789; https://doi.org/10.3390/genes15060789 (registering DOI) - 15 Jun 2024
Viewed by 187
Abstract
This study delves into the diagnostic yield of whole-exome sequencing (WES) in pediatric patients presenting with developmental delay/intellectual disability (DD/ID), while also exploring the utility of Reverse Phenotyping (RP) in refining diagnoses. A cohort of 100 pediatric patients underwent WES, yielding a diagnosis [...] Read more.
This study delves into the diagnostic yield of whole-exome sequencing (WES) in pediatric patients presenting with developmental delay/intellectual disability (DD/ID), while also exploring the utility of Reverse Phenotyping (RP) in refining diagnoses. A cohort of 100 pediatric patients underwent WES, yielding a diagnosis in 66% of cases. Notably, RP played a significant role in cases with negative prior genetic testing, underscoring its significance in complex diagnostic scenarios. The study revealed a spectrum of genetic conditions contributing to DD/ID, illustrating the heterogeneity of etiological factors. Despite challenges, WES demonstrated effectiveness, particularly in cases with metabolic abnormalities. Reverse phenotyping was indicated in half of the patients with positive WES findings. Neural network models exhibited moderate-to-exceptional predictive abilities for aiding in patient selection for WES and RP. These findings emphasize the importance of employing comprehensive genetic approaches and RP in unraveling the genetic underpinnings of DD/ID, thereby facilitating personalized management and genetic counseling for affected individuals and families. This research contributes insights into the genetic landscape of DD/ID, enhancing our understanding and guiding clinical practice in this particular field of clinical genetics. Full article
13 pages, 4184 KiB  
Article
Genetic Variants in KNDy Pathway Lack Association with Premature Ovarian Insufficiency in Mexican Women: A Sequencing-Based Cohort Study
by Aidet Ruiz and Luis Ramos
Genes 2024, 15(6), 788; https://doi.org/10.3390/genes15060788 (registering DOI) - 15 Jun 2024
Viewed by 193
Abstract
Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic–pituitary–gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders [...] Read more.
Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic–pituitary–gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders linked to mutations in the KNDy genes related to premature ovarian insufficiency (POI). A cohort of 14 Mexican POI patients underwent genetic screening using PCR-SSCP and Sanger sequencing, assessing the genetic variations’ impact on protein function thereafter using multiple in silico tools. The PCR excluded extensive deletions, insertions, and duplications, while SSCP detected five genetic variants. Variations occurred in the KISS1 (c.58G>A and c.242C>G), KISS1R (c.1091A>T), PDYN (c.600C>T), and OPRK1 (c.36G>T) genes, whereas no genetic anomalies were found in NK3/NK3R genes. Each single-nucleotide variant underwent genotyping using PCR-SSCP in 100 POI-free subjects. Their allelic frequencies paralleled the patient group. These observations indicate that allelic variations in the KNDy genes may not contribute to POI etiology. Hence, screening for mutations in KNDy genes should not be a part of the diagnostic protocol for POI. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 1027 KiB  
Article
Transcriptomic Analysis Reveals Adaptive Evolution and Conservation Implications for the Endangered Magnolia lotungensis
by Chenyu Shi, Yanjun Xie, Delong Guan and Guole Qin
Genes 2024, 15(6), 787; https://doi.org/10.3390/genes15060787 (registering DOI) - 14 Jun 2024
Viewed by 118
Abstract
Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant’s bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and [...] Read more.
Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant’s bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and 42,518 coding sequences. Notably, we identified 796 species-specific genes enriched in organelle gene regulation and defense responses. A codon usage bias analysis revealed that mutation bias appears to be the primary driver of selection in shaping the species’ genetic architecture. An evolutionary analysis based on dN/dS values of paralogous and orthologous gene pairs indicated a predominance of purifying selection, suggesting strong evolutionary constraints on most genes. A comparative transcriptomic analysis with Magnolia sinica identified approximately 1000 ultra-conserved genes, enriched in essential cellular processes such as transcriptional regulation, protein synthesis, and genome stability. Interestingly, only a limited number of 511 rapidly evolving genes under positive selection were detected compared to M. sinica and Magnolia kuangsiensis. These genes were enriched in metabolic processes associated with adaptation to specific environments, potentially limiting the species’ ability to expand its range. Our findings contribute to understanding the genetic architecture of M. lotungensis and suggest that an insufficient number of adaptive genes contribute to its endangered status. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
4 pages, 159 KiB  
Editorial
Study on Genotypes and Phenotypes of Neurodegenerative Diseases
by Claudia Ricci
Genes 2024, 15(6), 786; https://doi.org/10.3390/genes15060786 - 14 Jun 2024
Viewed by 184
Abstract
Neurodegenerative diseases are a heterogeneous group of age-related disorders that are characterised by the gradual degeneration or death of neurons in the central or peripheral nervous system [...] Full article
(This article belongs to the Special Issue Study on Genotypes and Phenotypes of Neurodegenerative Diseases)
29 pages, 1055 KiB  
Review
Through the Cat-Map Gateway: A Brief History of Cataract Genetics
by Alan Shiels
Genes 2024, 15(6), 785; https://doi.org/10.3390/genes15060785 - 14 Jun 2024
Viewed by 202
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract [...] Read more.
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait—often with an early or pediatric onset—with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes—including those for lens crystallins, connexins, and transcription factors—recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged—providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 5264 KiB  
Article
Genetic Analysis of the Plasmid-Based Temperature-Lethal Mutant pa1792|lpxH(Ts) in Pseudomonas aeruginosa
by Haoyang Zhang, Zhili Yang and Jianhua Liu
Genes 2024, 15(6), 784; https://doi.org/10.3390/genes15060784 - 14 Jun 2024
Viewed by 203
Abstract
Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential [...] Read more.
Many enzymes in the Raetz pathway for lipid A biosynthesis in Escherichia coli are essential. A homologous protein Pa1792|LpxH in Pseudomonas aeruginosa is known to complement the loss of LpxH in E. coli. Genome-wide transposon-insertion sequencing analysis indicates that lpxH is essential in P. aeruginosa. However, genetic analysis of lpxH in P. aeruginosa has not been carried out, partly because the conditional alleles of essential genes are not readily constructed. In this study, we first constructed a plasmid-based temperature-sensitive mutant ΔlpxH/pTS-lpxH or lpxH(Ts) in P. aeruginosa PAO1. Spot-plating assay indicated that lpxH(Ts) was lethal at a restrictive temperature, confirming its essentiality for growth. Microscopic analysis revealed that lpxH(Ts) exhibited an oval-shaped morphology, suggesting that lpxH was required for rod-shape formation. SDS-PAGE and Western blotting analysis showed that lpxH(Ts) failed to synthesize lipid A, consistent with its function in lipid A biosynthesis. Strong expression of lpxH but not the non-homologous isoenzyme lpxI or lpxG impeded growth and caused cell lysis, implying that lpxH-specific cofactors were required for this toxic effect in P. aeruginosa. Together, our results demonstrate that lpxH is essential for lipid A biosynthesis, rod-shaped growth, and viability in P. aeruginosa. We propose that this plasmid-based conditional allele is a useful tool for the genetic study of essential genes in P. aeruginosa. Full article
(This article belongs to the Special Issue Advances in Molecular Microbiology and Parasitology)
Show Figures

Figure 1

14 pages, 1064 KiB  
Article
The Families of Non-LTR Transposable Elements within Neritimorpha and Other Gastropoda
by Donald James Colgan
Genes 2024, 15(6), 783; https://doi.org/10.3390/genes15060783 - 14 Jun 2024
Viewed by 175
Abstract
Repeated sequences, especially transposable elements (TEs), are known to be abundant in some members of the important invertebrate class Gastropoda. TEs that do not have long terminal repeated sequences (non-LTR TEs) are frequently the most abundant type but have not been well characterised [...] Read more.
Repeated sequences, especially transposable elements (TEs), are known to be abundant in some members of the important invertebrate class Gastropoda. TEs that do not have long terminal repeated sequences (non-LTR TEs) are frequently the most abundant type but have not been well characterised in any gastropod. Despite this, sequences in draft gastropod genomes are often described as non-LTR TEs, but without identification to family type. This study was conducted to characterise non-LTR TEs in neritimorph snails, using genomic skimming surveys of three species and the recently published draft genome of Theodoxus fluviatilis. Multiple families of non-LTR TEs from the I, Jockey, L1, R2 and RTE superfamilies were found, although there were notably few representatives of the first of these, which is nevertheless abundant in other Gastropoda. Phylogenetic analyses of amino acid sequences of the reverse transcriptase domain from the elements ORF2 regions found considerable interspersion of representatives of the four neritimorph taxa within non-LTR families and sub-families. In contrast, phylogenetic analyses of sequences from the elements’ ORF1 region resolved the representatives from individual species as monophyletic. However, using either region, members of the two species of the Neritidae were closely related, suggesting their potential for investigation of phyletic evolution at the family level. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2544 KiB  
Article
Complete Organelle Genome of the Desiccation-Tolerant (DT) Moss Tortula atrovirens and Comparative Analysis of the Pottiaceae Family
by Yang Ma, Lifang Zhang, Min Yang, Qin Qi, Qian Yang, Jordi López-Pujol, Lihong Wang and Dongping Zhao
Genes 2024, 15(6), 782; https://doi.org/10.3390/genes15060782 - 13 Jun 2024
Viewed by 207
Abstract
Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula [...] Read more.
Tortula atrovirens (Sm.) Lindb. is an important component of biological soil crusts and possesses an extraordinary tolerance against desiccation in dryland habitats. However, knowledge of the organelle genome of this desiccation-tolerant (DT) moss is still lacking. Here, we assembled the first reported Tortula organelle genome and conducted a comprehensive analysis within the Pottiaceae family. T. atrovirens exhibited the second largest chloroplast genome (129,646 bp) within the Pottiaceae, whereas its mitogenome (105,877 bp) and those of other mosses were smaller in size compared to other land plants. The chloroplast and mitochondrial genomes of T. atrovirens were characterized by the expansion of IR boundaries and the absence of homologous recombination-mediated by large repeats. A total of 57 RNA editing sites were detected through mapping RNA-seq data. Moreover, the gene content and order were highly conserved among the Pottiaceae organelle genomes. Phylogenetic analysis showed that bryophytes are paraphyletic, with their three lineages (hornworts, mosses, and liverworts) and vascular plants forming successive sister clades. Timmiella anomala is clearly separated from the monophyletic Pottiaceae, and T. atrovirens is closely related to Syntrichia filaris within the Pottioideae. In addition, we detected four hypervariable regions for candidate-molecular markers. Our findings provide valuable insights into the organelle genomes of T. atrovirens and the evolutionary relationships within the Pottiaceae family, facilitating future discovery of DT genetic resources from bryophytes. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome (Volume II))
21 pages, 2592 KiB  
Article
Analysis of Hyperosmotic Tolerance Mechanisms in Gracilariopsis lemaneiformis Based on Weighted Co-Expression Network Analysis
by Baoheng Xiao, Xiaoqing Feng, Pingping Li and Zhenghong Sui
Genes 2024, 15(6), 781; https://doi.org/10.3390/genes15060781 - 13 Jun 2024
Viewed by 175
Abstract
We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‰, 45‰, and 60‰) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network [...] Read more.
We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‰, 45‰, and 60‰) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‰. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism’s proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics)
16 pages, 973 KiB  
Article
Integrating Genetic Services in the Philippine Public Health Delivery System: The Value of Networks
by Carmencita D. Padilla, Michelle E. Abadingo, Ebner Bon G. Maceda and Maria Melanie Liberty B. Alcausin
Genes 2024, 15(6), 780; https://doi.org/10.3390/genes15060780 - 13 Jun 2024
Viewed by 132
Abstract
The delivery of genetic services in developing countries is faced with significant challenges, despite medical and technological advances globally. The Philippines, being an archipelago, faces even more challenges, with significant disparities in access to healthcare, and tertiary medical centers and specialists being concentrated [...] Read more.
The delivery of genetic services in developing countries is faced with significant challenges, despite medical and technological advances globally. The Philippines, being an archipelago, faces even more challenges, with significant disparities in access to healthcare, and tertiary medical centers and specialists being concentrated in the major cities. The utilization of different networks for the integration of genetic services in the existing public health delivery system has been valuable. Using the well-established network of the national newborn screening program, genetic services have been successfully integrated into the delivery of healthcare, even at the grassroot level. Equitable access to healthcare, including genetic services, was highlighted and supported by the enactment of the Rare Disease Law in 2016. The support of the academe to assure the sustainability of services was evident in the establishment of a genetic counseling program to augment the work of a handful of clinical geneticists. Professional societies and support groups have been instrumental in identifying genetic conditions to be prioritized and lobbying for increased public awareness, leading to national programs and policies. This paper primarily discusses the value of networks in the delivery of genetic services, specifically newborn screening, programs for rare diseases, birth defects, and genetic counseling. Full article
(This article belongs to the Special Issue Human Genetics: Diseases, Community, and Counseling)
Show Figures

Figure 1

17 pages, 1218 KiB  
Article
A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland
by Shuwan Wang, Honghe Ren, Chaobin Qin, Jie Su, Xinhui Song, Ruijia Li, Kuiqing Cui, Yang Liu, Deshun Shi, Qingyou Liu and Zhipeng Li
Genes 2024, 15(6), 779; https://doi.org/10.3390/genes15060779 - 13 Jun 2024
Viewed by 165
Abstract
Peroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. [...] Read more.
Peroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. In this study, we found that only PPARG-X17 and PPARG-X21 of the splicing variant were expressed in the buffalo mammary gland. Amino acid sequence characterization showed that the proteins encoded by PPARG-X17 and PPARG-X21 are endonuclear non-secreted hydrophilic proteins. Protein domain prediction found that only the PPARG-X21-encoded protein had PPAR ligand-binding domains (NR_LBD_PPAR), which may lead to functional differences between the two splices. RNA interference (RNAi) and the overexpression of PPARG-X17 and PPARG-X21 in buffalo mammary epithelial cells (BMECs) were performed. Results showed that the expression of fatty acid synthesis-related genes (ACACA, CD36, ACSL1, GPAT, AGPAT6, DGAT1) was significantly modified (p < 0.05) by the RNAi and overexpression of PPARG-X17 and PPARG-X21. All kinds of FAs detected in this study were significantly decreased (p < 0.05) after RNAi of PPARG-X17 or PPARG-X21. Overexpression of PPARG-X17 or PPARG-X21 significantly decreased (p < 0.05) the SFA content, while significantly increased (p < 0.05) the UFA, especially the MUFA in the BMECs. In conclusion, there are two PPARG splicing variants expressed in the BMECs that can regulate FA synthesis by altering the expression of diverse fatty acid synthesis-related genes. This study revealed the expression characteristics and functions of the PPARG gene in buffalo mammary glands and provided a reference for further understanding of fat synthesis in buffalo milk. Full article
(This article belongs to the Special Issue Advances in Cattle, Sheep, and Goats Molecular Genetics and Breeding)
10 pages, 232 KiB  
Article
Mosaicism for Autosomal Trisomies: A Comprehensive Analysis of 1266 Published Cases Focusing on Maternal Age and Reproductive History
by Natalia V. Kovaleva and Philip D. Cotter
Genes 2024, 15(6), 778; https://doi.org/10.3390/genes15060778 - 13 Jun 2024
Viewed by 187
Abstract
Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers’ [...] Read more.
Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers’ demographics were undertaken. This is the first study aimed to address this gap. For that, we have screened more than eight hundred publications on mosaic trisomies, reviewing data including gender and clinical status of mosaic carriers, maternal age and reproductive history. In total, 596 publications were eligible for analysis, containing data on 948 prenatal diagnoses, including true fetal mosaicism (TFM) and confined placental mosaicism (CPM), and on 318 cases of postnatally detected mosaicism (PNM). No difference was found in maternal age between normal pregnancy outcomes with appropriate birth weight and those with intrauterine growth restriction. Unexpectedly, a higher proportion of advanced maternal ages (AMA) was found in normal outcomes compared to abnormal ones (abnormal fetus or newborn) and fetal losses, 73% vs. 56% and 50%, p = 0.0015 and p = 0.0011, correspondingly. Another intriguing finding was a higher AMA proportion in mosaic carriers with concomitant uniparental disomy (UPD) for chromosomes 7, 14, 15, and 16 compared to carriers with biparental disomy (BPD) (72% vs. 58%, 92% vs. 55%, 87% vs. 78%, and 65% vs. 24%, correspondingly); overall figures were 78% vs. 48%, p = 0.0026. Analysis of reproductive histories showed a very poor reporting but almost two-fold higher rate of mothers reporting a previous fetal loss from PNM cohort (in which almost all patients were clinically abnormal) compared to mothers from the TFM and CPM cohorts (with a large proportion of normal outcomes), 30% vs. 16%, p = 0.0072. The occurrence of a previous pregnancy with a chromosome abnormality was 1 in 13 in the prenatal cohort and 1 in 16 in the postnatal cohort, which are five-fold higher compared to published studies on non-mosaic trisomies. We consider the data obtained in this study to be preliminary despite the magnitude of the literature reviewed since reporting of detailed data was mostly poor, and therefore, the studied cohorts do not represent “big data”. Nevertheless, the information obtained is useful both for clinical genetic counseling and for modeling further studies. Full article
(This article belongs to the Special Issue Genomic Mosaicism in Human Development and Diseases)
22 pages, 3141 KiB  
Review
Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis
by Helen Lima Del Puerto, Ana Paula G. S. Miranda, Dinah Qutob, Enio Ferreira, Felipe H. S. Silva, Bruna M. Lima, Barbara A. Carvalho, Bruna Roque-Souza, Eduardo Gutseit, Diego C. Castro, Emanuele T. Pozzolini, Nayara O. Duarte, Thacyana B. G. Lopes, Daiana Y. O. Taborda, Stella M. Quirino, Ahmed Elgerbi, John S. Choy and Adam Underwood
Genes 2024, 15(6), 777; https://doi.org/10.3390/genes15060777 - 13 Jun 2024
Viewed by 282
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, [...] Read more.
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 3287 KiB  
Article
The Genome Organization of 5S rRNA Genes in the Model Organism Tribolium castaneum and Its Sibling Species Tribolium freemani
by Marin Volarić, Evelin Despot-Slade, Damira Veseljak, Martina Pavlek, Tanja Vojvoda Zeljko, Brankica Mravinac and Nevenka Meštrović
Genes 2024, 15(6), 776; https://doi.org/10.3390/genes15060776 - 13 Jun 2024
Viewed by 178
Abstract
5S ribosomal DNAs (rDNAs) are arranged in tandem and are often under-represented in genome assemblies. In the present study, we performed a global and in-depth analysis of the 5S rDNAs in the model insect Tribolium castaneum and its closely related species Tribolium freemani [...] Read more.
5S ribosomal DNAs (rDNAs) are arranged in tandem and are often under-represented in genome assemblies. In the present study, we performed a global and in-depth analysis of the 5S rDNAs in the model insect Tribolium castaneum and its closely related species Tribolium freemani. To accomplish this goal, we used our recently published genome assemblies based on Nanopore and PacBio long-read sequencing. Although these closely related species share the 5S rRNA gene sequence with high homology, they show a different organization of the 5S rDNA locus. Analysis of 5S rDNA arrays in T. castaneum revealed a typical tandemly repeated organization characterized by repeat units consisting of the 121 bp long 5S rRNA gene and the 71 bp long nontranscribed spacer (NTS). In contrast, T. freemani showed a much more complex organization of 5S rDNA arrays characterized by two patterns. The first is based on the association of 5S rRNA gene with arrays of a satellite DNA, representing the NTS sequence of the 5S rDNA genes in T. freemani. The second, more complex type is characterized by a somewhat less frequent occurrence of the 5S rRNA gene and its association with longer satellite DNA arrays that are regularly interrupted by Jockey-like retrotransposons. This organization, in which the ribosomal gene is associated with two completely different repetitive elements such as satellite DNAs and retrotransposons, suggests that the 5S rRNA gene, regardless of its crucial function in the genome, could be a subject of extremely dynamic genomic rearrangements. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4828 KiB  
Article
A Proteogenomic Approach to Unravel New Proteins Encoded in the Leishmania donovani (HU3) Genome
by Javier Adán-Jiménez, Alejandro Sánchez-Salvador, Esperanza Morato, Jose Carlos Solana, Begoña Aguado and Jose M. Requena
Genes 2024, 15(6), 775; https://doi.org/10.3390/genes15060775 - 13 Jun 2024
Viewed by 190
Abstract
The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost [...] Read more.
The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost if these resources are incomplete. Here, we show that most proteomics data may be recovered by interconnecting genomics and proteomics approaches (i.e., following a proteogenomic strategy), resulting, in turn, in an improvement of gene/protein models. In this study, we generated proteomics data from Leishmania donovani (HU3 strain) promastigotes that allowed us to detect 1908 proteins in this developmental stage on the basis of the currently annotated proteins available in public databases. However, when the proteomics data were searched against all possible open reading frames existing in the L. donovani genome, twenty new protein-coding genes could be annotated. Additionally, 43 previously annotated proteins were extended at their N-terminal ends to accommodate peptides detected in the proteomics data. Also, different post-translational modifications (phosphorylation, acetylation, methylation, among others) were found to occur in a large number of Leishmania proteins. Finally, a detailed comparative analysis of the L. donovani and Leishmania major experimental proteomes served to illustrate how inaccurate conclusions can be raised if proteomes are compared solely on the basis of the listed proteins identified in each proteome. Finally, we have created data entries (based on freely available repositories) to provide and maintain updated gene/protein models. Raw data are available via ProteomeXchange with the identifier PXD051920. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2024)
Show Figures

Figure 1

10 pages, 1522 KiB  
Article
Clinical Relevance of the Systematic Analysis of Copy Number Variants in the Genetic Study of Cardiomyopathies
by David de Uña-Iglesias, Juan Pablo Ochoa, Lorenzo Monserrat and Roberto Barriales-Villa
Genes 2024, 15(6), 774; https://doi.org/10.3390/genes15060774 - 13 Jun 2024
Viewed by 173
Abstract
Cardiomyopathies (CMs), one of the main causes of sudden death among the young population, are a heterogeneous group of myocardial diseases, usually with a genetic cause. Next-Generation Sequencing (NGS) has expanded the genes studied for CMs; however, the yield is still around 50%. [...] Read more.
Cardiomyopathies (CMs), one of the main causes of sudden death among the young population, are a heterogeneous group of myocardial diseases, usually with a genetic cause. Next-Generation Sequencing (NGS) has expanded the genes studied for CMs; however, the yield is still around 50%. The systematic study of Copy Number Variants (CNVs) could contribute to improving our diagnostic capacity. These alterations have already been described as responsible for cardiomyopathies in some cases; however, their impact has been rarely assessed. We analyzed the clinical significance of CNVs in cardiomyopathies by studying 11,647 affected patients, many more than those considered in previously published studies. We evaluated the yield of the systematic study of CNVs in a production context using NGS and a novel CNV detection software tool v2.0 that has demonstrated great efficacy, maximizing sensitivity and avoiding false positives. We obtained a CNV analysis yield of 0.8% that fluctuated depending on the type of cardiomyopathy studied (0.29% HCM, 1.41% DCM, 1.88% ARVC, 1.8% LVNC, 1.45% RCM), and we present the frequency of occurrence for 18 genes that agglutinate the 95 pathogenic/likely pathogenic CNVs detected. We conclude the importance of including in diagnostic tests a systematic study of these genetic alterations for the different cardiomyopathies. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 2149 KiB  
Article
LIM Zinc Finger Domain Containing 1 Risk Genotype of Recipient Is Associated with Renal Tubular Inflammation in Kidney Transplantation
by Yasar Caliskan, Yasemin Ozluk, Kento Kurashima, Safak Mirioglu, Ahmet Burak Dirim, Ozge Hurdogan, Ozgur Akin Oto, Marzena Syn, Mustafa Nazzal, Ajay Jain, John Edwards, Halil Yazici and Krista L. Lentine
Genes 2024, 15(6), 773; https://doi.org/10.3390/genes15060773 - 13 Jun 2024
Viewed by 251
Abstract
Background: Homozygosity for LIMS1 rs893403-GG genotype is linked to an increased risk of allograft rejection after kidney transplantation. Ischemia-reperfusion of the kidney allograft leads to long term infiltration of activated and effector-memory T lymphocytes and resulting in rejection and long-term fibrosis. However, the genotype, [...] Read more.
Background: Homozygosity for LIMS1 rs893403-GG genotype is linked to an increased risk of allograft rejection after kidney transplantation. Ischemia-reperfusion of the kidney allograft leads to long term infiltration of activated and effector-memory T lymphocytes and resulting in rejection and long-term fibrosis. However, the genotype, LIMS1 expression under ischemic conditions and the long-term histopathological relationships remain ill-defined. Methods: We examined the impact of the recipient’s LIMS1-rs893403 genotype with transplant kidney histopathology. The association of the LIMS1-rs893403 genotype and LIMS1 and GCC2 mRNA expression in ischemic donor kidneys were also examined. Recipients who underwent transplant kidney biopsy were genotyped for the LIMS1-rs893403 variant and associated deletion. Histopathological findings were compared between recipients with LIMS1 risk and non-risk genotypes. Real-time PCR and immunofluorescence staining for LIMS1 and GCC2 expression were performed in non-utilized donor kidneys. Results: Demographic, clinical, and treatment characteristics and the histopathological diagnosis were similar between recipients with rs893403 GG and AA/AG genotype. The Banff tubulitis score was higher in GG recipients (n = 24) compared to AA/AG (n = 86) recipients (1.42 ± 0.65 vs. 1.12 ± 0.66, p = 0.03). Ischemic kidneys with GG showed higher LIMS1 and GCC2 mRNA expression than kidneys with AG. Kidneys with rs893403-GG had higher tubular LIMS1 and GCC2 immunohistochemical staining compared to kidneys with rs893403-AG. Conclusions: Our data supports the role of the LIMS1 locus in kidney transplant rejection, particularly in lymphocyte infiltration into the internal aspect of the tubular basement membranes. Increased LIMS1 and GCC2 expression in ischemic donor kidneys with the GG genotype require further studies. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 473 KiB  
Review
Extracellular Vesicles in Multiple Sclerosis: Their Significance in the Development and Possible Applications as Therapeutic Agents and Biomarkers
by Ida Manna, Selene De Benedittis and Danilo Porro
Genes 2024, 15(6), 772; https://doi.org/10.3390/genes15060772 - 12 Jun 2024
Viewed by 142
Abstract
Extracellular vesicles (EVs) are “micro-shuttles” that play a role as mediators of intercellular communication. Cells release EVs into the extracellular environment in both physiological and pathological conditions and are involved in intercellular communication, due to their ability to transfer proteins, lipids, and nucleic [...] Read more.
Extracellular vesicles (EVs) are “micro-shuttles” that play a role as mediators of intercellular communication. Cells release EVs into the extracellular environment in both physiological and pathological conditions and are involved in intercellular communication, due to their ability to transfer proteins, lipids, and nucleic acids, and in the modulation of the immune system and neuroinflammation. Because EVs can penetrate the blood–brain barrier and move from the central nervous system to the peripheral circulation, and vice versa, recent studies have shown a substantial role for EVs in several neurological diseases, including multiple sclerosis (MS). MS is a demyelinating disease where the main event is caused by T and B cells triggering an autoimmune reaction against myelin constituents. Recent research has elucidate the potential involvement of extracellular vesicles (EVs) in the pathophysiology of MS, although, to date, their potential role both as agents and therapeutic targets in MS is not fully defined. We present in this review a summary and comprehensive examination of EVs’ involvement in the pathophysiology of multiple sclerosis, exploring their potential applications as biomarkers and indicators of therapy response. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
13 pages, 2607 KiB  
Article
Isolation and Characterization of Phenylalanine Ammonia Lyase (PAL) Genes in Ferula pseudalliacea: Insights into the Phenylpropanoid Pathway
by Pegah Shahidi, Bahman Bahramnejad, Yavar Vafaee, Dara Dastan and Parviz Heidari
Genes 2024, 15(6), 771; https://doi.org/10.3390/genes15060771 - 12 Jun 2024
Viewed by 250
Abstract
Phenylalanine ammonia lyase (PAL) is a key enzyme regulating the biosynthesis of the compounds of the phenylpropanoid pathway. This study aimed to isolate and characterize PAL genes from Ferula pseudalliacea Rech.f. (Apiales: Apiaceae) to better understand the regulation of metabolite production. Three PAL [...] Read more.
Phenylalanine ammonia lyase (PAL) is a key enzyme regulating the biosynthesis of the compounds of the phenylpropanoid pathway. This study aimed to isolate and characterize PAL genes from Ferula pseudalliacea Rech.f. (Apiales: Apiaceae) to better understand the regulation of metabolite production. Three PAL gene isoforms (FpPAL1-3) were identified and cloned using the 3′-RACE technique and confirmed by sequencing. Bioinformatics analysis revealed important structural features, such as phosphorylation sites, physicochemical properties, and evolutionary relationships. Expression analysis by qPCR demonstrated the differential transcription profiles of each FpPAL isoform across roots, stems, leaves, flowers, and seeds. FpPAL1 showed the highest expression in stems, FpPAL2 in roots and flowers, and FpPAL3 in flowers. The presence of three isoforms of PAL in F. pseudalliacea, along with the diversity of PAL genes and their tissue-specific expression profiles, suggests that complex modes of regulation exist for phenylpropanoid biosynthesis in this important medicinal plant. The predicted interaction network revealed associations with key metabolic pathways, emphasizing the multifaceted roles of these PAL genes. In silico biochemical analyses revealed the hydrophilicity of the FpPAL isozyme; however, further analysis of substrate specificity and enzyme kinetics can clarify the specific role of each FpPAL isozyme. These comprehensive results increase the understanding of PAL genes in F. pseudalliacea, helping to characterize their contributions to secondary metabolite biosynthesis. Full article
(This article belongs to the Special Issue Genomics and Genetics of Medicinal Plants)
Show Figures

Figure 1

17 pages, 5085 KiB  
Article
A Subset of Microsatellite Unstable Cancer Genomes Prone to Short Insertions over Deletions Is Associated with Elevated Anticancer Immunity
by Sunmin Kim, Dong-Jin Han, Seo-Young Lee, Youngbeen Moon, Su Jung Kang and Tae-Min Kim
Genes 2024, 15(6), 770; https://doi.org/10.3390/genes15060770 - 12 Jun 2024
Viewed by 223
Abstract
Deficiencies in DNA mismatch repair (MMRd) leave characteristic footprints of microsatellite instability (MSI) in cancer genomes. We used data from the Cancer Genome Atlas and International Cancer Genome Consortium to conduct a comprehensive analysis of MSI-associated cancers, focusing on indel mutational signatures. We [...] Read more.
Deficiencies in DNA mismatch repair (MMRd) leave characteristic footprints of microsatellite instability (MSI) in cancer genomes. We used data from the Cancer Genome Atlas and International Cancer Genome Consortium to conduct a comprehensive analysis of MSI-associated cancers, focusing on indel mutational signatures. We classified MSI-high genomes into two subtypes based on their indel profiles: deletion-dominant (MMRd-del) and insertion-dominant (MMRd-ins). Compared with MMRd-del genomes, MMRd-ins genomes exhibit distinct mutational and transcriptomic features, including a higher prevalence of T>C substitutions and related mutation signatures. Short insertions and deletions in MMRd-ins and MMRd-del genomes target different sets of genes, resulting in distinct indel profiles between the two subtypes. In addition, indels in the MMRd-ins genomes are enriched with subclonal alterations that provide clues about a distinct evolutionary relationship between the MMRd-ins and MMRd-del genomes. Notably, the transcriptome analysis indicated that MMRd-ins cancers upregulate immune-related genes, show a high level of immune cell infiltration, and display an elevated neoantigen burden. The genomic and transcriptomic distinctions between the two types of MMRd genomes highlight the heterogeneity of genetic mechanisms and resulting genomic footprints and transcriptomic changes in cancers, which has potential clinical implications. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 2064 KiB  
Article
Causality Investigation between Gut Microbiome and Sleep-Related Traits: A Bidirectional Two-Sample Mendelian Randomization Study
by Mingxia Zhai, Weichen Song, Zhe Liu, Wenxiang Cai and Guan Ning Lin
Genes 2024, 15(6), 769; https://doi.org/10.3390/genes15060769 - 12 Jun 2024
Viewed by 278
Abstract
Recent research has highlighted associations between sleep and microbial taxa and pathways. However, the causal effect of these associations remains unknown. To investigate this, we performed a bidirectional two-sample Mendelian randomization (MR) analysis using summary statistics of genome-wide association studies (GWAS) from 412 [...] Read more.
Recent research has highlighted associations between sleep and microbial taxa and pathways. However, the causal effect of these associations remains unknown. To investigate this, we performed a bidirectional two-sample Mendelian randomization (MR) analysis using summary statistics of genome-wide association studies (GWAS) from 412 gut microbiome traits (N = 7738) and GWAS studies from seven sleep-associated traits (N = 345,552 to 386,577). We employed multiple MR methods to assess causality, with Inverse Variance Weighted (IVW) as the primary method, alongside a Bonferroni correction ((p < 2.4 × 10−4) to determine significant causal associations. We further applied Cochran’s Q statistical analysis, MR-Egger intercept, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) for heterogeneity and pleiotropy assessment. IVW estimates revealed 79 potential causal effects of microbial taxa and pathways on sleep-related traits and 45 inverse causal relationships, with over half related to pathways, emphasizing their significance. The results revealed two significant causal associations: genetically determined relative abundance of pentose phosphate decreased sleep duration (p = 9.00 × 10−5), and genetically determined increase in fatty acid level increased the ease of getting up in the morning (p = 8.06 × 10−5). Sensitivity analyses, including heterogeneity and pleiotropy tests, as well as a leave-one-out analysis of single nucleotide polymorphisms, confirmed the robustness of these relationships. This study explores the potential causal relationships between sleep and microbial taxa and pathways, offering novel insights into their complex interplay. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 645 KiB  
Article
An Assessment of the Performance Limitations of the Integrated QuantifilerTM Trio-HRM Assay: A Forensic Tool Designed to Identify Mixtures at the Quantification Stage
by Chastyn Smith, Sarah J. Seashols-Williams, Edward L. Boone and Tracey Dawson Green
Genes 2024, 15(6), 768; https://doi.org/10.3390/genes15060768 - 12 Jun 2024
Viewed by 205
Abstract
Although guidelines exist for identifying mixtures, these measures often occur at the end-point of analysis and are protracted. To facilitate early mixture detection, we integrated a high-resolution melt (HRM) mixture screening assay into the qPCR step of the forensic workflow, producing the integrated [...] Read more.
Although guidelines exist for identifying mixtures, these measures often occur at the end-point of analysis and are protracted. To facilitate early mixture detection, we integrated a high-resolution melt (HRM) mixture screening assay into the qPCR step of the forensic workflow, producing the integrated QuantifilerTM Trio-HRM assay. The assay, when coupled with a prediction tool, allowed for 75.0% accurate identification of the contributor status of a sample (single source vs. mixture). To elucidate the limitations of the developed qPCR-HRM assay, developmental validation studies were conducted assessing the reproducibility and samples with varying DNA ratios, contributors, and quality. From this work, it was determined that the integrated QuantifilerTM Trio-HRM assay is capable of accurately identifying mixtures with up to five contributors and mixtures at ratios up to 1:100. Further, the optimal performance concentration range was found to be between 0.025 and 0.5 ng/µL. With these results, evidentiary-like DNA samples were then analyzed, resulting in 100.0% of the mixture samples being accurately identified; furthermore, every time a sample was predicted as a single source, it was true, giving confidence to any single-source calls. Overall, the integrated QuantifilerTM Trio-HRM assay has exhibited an enhanced ability to discern mixture samples from single-source samples at the qPCR stage under commonly observed conditions regardless of the contributor’s sex. Full article
Show Figures

Figure 1

8 pages, 806 KiB  
Article
Novel Evolution of Mineralocorticoid Receptor in Humans Compared to Chimpanzees, Gorillas, and Orangutans
by Yoshinao Katsu, Jiawen Zhang and Michael E. Baker
Genes 2024, 15(6), 767; https://doi.org/10.3390/genes15060767 - 12 Jun 2024
Viewed by 254
Abstract
We identified five distinct full-length human mineralocorticoid receptor (MR) genes containing either 984 amino acids (MR-984) or 988 amino acids (MR-988), which can be distinguished by the presence or absence of Lys, Cys, Ser, and Trp (KCSW) in their DNA-binding domain (DBD) and [...] Read more.
We identified five distinct full-length human mineralocorticoid receptor (MR) genes containing either 984 amino acids (MR-984) or 988 amino acids (MR-988), which can be distinguished by the presence or absence of Lys, Cys, Ser, and Trp (KCSW) in their DNA-binding domain (DBD) and mutations at codons 180 and 241 in their amino-terminal domain (NTD). Two human MR-KCSW genes contain either (Val-180, Val-241) or (Ile-180, Val-241) in their NTD, and three human MR-984 genes contain either (Ile-180, Ala-241), (Val-180, Val-241), or (Ile-180, Val-241). Human MR-KCSW with (Ile-180, Ala-241) has not been cloned. In contrast, chimpanzees contain four MRs: two MR-988s with KCSW in their DBD, or two MR-984s without KCSW in their DBD. Chimpanzee MRs only contain (Ile180, Val-241) in their NTD. A chimpanzee MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Gorillas and orangutans each contain one MR-988 with KCSW in the DBD and one MR-984 without KCSW, and these MRs only contain (Ile-180, Val-241) in their NTD. A gorilla MR or orangutan MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Together, these data suggest that human MRs with (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD evolved after humans and chimpanzees diverged from their common ancestor. Considering the multiple functions in human development of the MR in kidney, brain, heart, skin, and lungs, as well as MR activity in interaction with the glucocorticoid receptor, we suggest that the evolution of human MRs that are absent in chimpanzees may have been important in the evolution of humans from chimpanzees. Investigation of the physiological responses to corticosteroids mediated by the MR in humans, chimpanzees, gorillas, and orangutans may provide insights into the evolution of humans and their closest relatives. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

10 pages, 792 KiB  
Article
Genetic Characterization of 191 Probands with Inherited Retinal Dystrophy by Targeted NGS Analysis
by Alessandra Mihalich, Gabriella Cammarata, Gemma Tremolada, Emanuela Manfredini, Stefania Bianchi Marzoli and Anna Maria Di Blasio
Genes 2024, 15(6), 766; https://doi.org/10.3390/genes15060766 - 12 Jun 2024
Viewed by 255
Abstract
Inherited retinal diseases (IRDs) represent a frequent cause of blindness in children and adults. As a consequence of the phenotype and genotype heterogeneity of the disease, it is difficult to have a specific diagnosis without molecular testing. To date, over 340 genes and [...] Read more.
Inherited retinal diseases (IRDs) represent a frequent cause of blindness in children and adults. As a consequence of the phenotype and genotype heterogeneity of the disease, it is difficult to have a specific diagnosis without molecular testing. To date, over 340 genes and loci have been associated with IRDs. We present the molecular finding of 191 individuals with IRD, analyzed by targeted next-generation sequencing (NGS). For 67 of them, we performed a family segregation study, considering a total of 126 relatives. A total of 359 variants were identified, 44 of which were novel. Genetic diagnostic yield was 41%. However, after stratifying the patients according to their clinical suspicion, diagnostic yield was higher for well-characterized diseases such as Stargardt disease (STGD), at 65%, and for congenital stationary night blindness 2 (CSNB2), at 64%. Diagnostic yield was higher in the patient group where family segregation analysis was possible (68%) and it was higher in younger (55%) than in older patients (33%). The results of this analysis demonstrated that targeted NGS is an effective method for establishing a molecular genetic diagnosis of IRDs. Furthermore, this study underlines the importance of segregation studies to understand the role of genetic variants with unknow pathogenic role. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Identifying Regions of the Genome Associated with Conception Rate to the First Service in Holstein Heifers Bred by Artificial Insemination and as Embryo Transfer Recipients
by Victoria C. Kelson, Jennifer N. Kiser, Kimberly M. Davenport, Emaly M. Suarez, Brenda M. Murdoch and Holly L. Neibergs
Genes 2024, 15(6), 765; https://doi.org/10.3390/genes15060765 - 11 Jun 2024
Viewed by 620
Abstract
Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers [...] Read more.
Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10−5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss. Full article
(This article belongs to the Special Issue Livestock Genomics, Genetics and Breeding)
Show Figures

Figure 1

11 pages, 609 KiB  
Article
Genetic Heterogeneity in Cowpea Genotypes (Vigna unguiculata L. Walp) Using DArTseq (GBS)-Derived Single Nucleotide Polymorphisms
by Goitsemang Mahlomola Hendry Dikane and Moosa Mahmood Sedibe
Genes 2024, 15(6), 764; https://doi.org/10.3390/genes15060764 - 11 Jun 2024
Viewed by 219
Abstract
Cowpeas (Vigna unguiculata L. Walp) have been credible constituents of nutritious food and forage in human and animal diets since the Neolithic era. The modern technique of Diversity Array Technology (DArTseq) is both cost-effective and rapid in producing thousands of high-throughputs, genotyped, [...] Read more.
Cowpeas (Vigna unguiculata L. Walp) have been credible constituents of nutritious food and forage in human and animal diets since the Neolithic era. The modern technique of Diversity Array Technology (DArTseq) is both cost-effective and rapid in producing thousands of high-throughputs, genotyped, single nucleotide polymorphisms (SNPs) in wide-genomic analyses of genetic diversity. The aim of this study was to assess the heterogeneity in cowpea genotypes using DArTseq-derived SNPs. A total of 92 cowpea genotypes were selected, and their fourteen-day-old leaves were freeze-dried for five days. DNA was extracted using the CTAB protocol, genotyped using DArTseq, and analysed using DArTsoft14. A total of 33920 DArTseq-derived SNPs were recalled for filtering analysis, with a final total of 16960 SNPs. The analyses were computed using vcfR, poppr, and ape in R Studio v1.2.5001-3 software. The heatmap revealed that the TVU 9596 (SB26), Orelu (SB72), 90K-284-2 (SB55), RV 403 (SB17), and RV 498 (SB16) genotypes were heterogenous. The mean values for polymorphic information content, observed heterozygosity, expected heterozygosity, major allele frequency, and the inbreeding coefficient were 0.345, 0.386, 0.345, 0.729, and 0.113, respectively. Moreover, they validated the diversity of the evaluated cowpea genotypes, which could be used for potential breeding programmes and management of cowpea germplasm. Full article
(This article belongs to the Special Issue Genetics and Breeding of Legume Crops)
Previous Issue
Back to TopTop