A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. RNA Extraction, Strand-Specific Library Construction and Sequencing
2.3. Differential Expression Analysis of mRNA, miRNA and circRNA
2.4. Construction of DEcircRNA-DEmiRNA-DEmRNA Regulatory Network
2.5. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
3. Results
3.1. Overview of Sequencing and Identification of miRNA in Chicken Uterus
3.2. Functional Enrichment Analysis of Differently Expressed miRNA and Targeted Genes
3.3. Overview of Sequencing and Identification of circRNA in Chicken Uterus
3.4. Functional Enrichment Analysis of Differentially Expressed circRNA and Target Genes
3.5. Construction of the ceRNA Network of Blue-Shell Egg
3.6. Validation of DEmiRNAs by RT-qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Meng, G.; Bai, Y.; Liu, R.; Du, Y.; Su, L. Comparative transcriptome analysis provides clues to molecular mechanisms underlying blue-green eggshell color in the Jinding duck (Anas platyrhynchos). BMC Genom. 2017, 18, 725. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.-P.; Lin, X.-Y.; Wu, Y.; Zhou, S.-Y.; Huang, Z.-b.; Huang, Y.-F.; Li, A.; Huang, X.-H. Isolation of blue-green eggshell pigmentation-related genes from Putian duck through RNA-seq. BMC Genom. 2019, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Ahnen, R.T.; Slavin, J.L. Eggs as Part of a Healthy Eating Pattern. In Eggs as Functional Foods and Nutraceuticals for Human Health; Wu, J., Ed.; The Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Yuan, Q.Y.; Lu, L.Z. Progresses in inheritance of genes for avian eggshell color. Yi Chuan 2007, 29, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.R.; Wells, J.W. A Review of eggshell pigmentation. World’s Poult. Sci. J. 1987, 43, 238–246. [Google Scholar] [CrossRef]
- Thompson, C.F.; Hodges, K.E.; Mortimer, N.T.; Vrailas-Mortimer, A.D.; Sakaluk, S.K.; Hauber, M.E. Avian eggshell coloration predicts shell-matrix protoporphyrin content. Can. J. Zool. 2021, 100, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, Z.; Yang, N.; Ning, Z. Quantitative expression of candidate genes affecting eggshell color. Anim. Sci. J. 2014, 85, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.Y.; Vevers, H.G. A survey of avian eggshell pigments. Comp. Biochem. Physiol. B Comp. Biochem. 1976, 55, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Hamchand, R.; Hanley, D.; Prum, R.O.; Bruckner, C. Expanding the eggshell colour gamut: Uroerythrin and bilirubin from tinamou (Tinamidae) eggshells. Sci. Rep. 2020, 10, 11264. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yang, Q.L.; Tang, Q.; Liu, R.X.; Hu, J.W.; Li, L.; Bai, L.L.; Liu, H.H. Metabonomics reveals the main small molecules differences between green and white egg shells in ducks. Ital. J. Anim. Sci. 2022, 21, 208–216. [Google Scholar] [CrossRef]
- Wang, Z.P.; Qu, L.J.; Yao, J.F.; Yang, X.L.; Li, G.Q.; Zhang, Y.Y.; Li, J.Y.; Wang, X.T.; Bai, J.R.; Xu, G.Y.; et al. An EAV-HP Insertion in 5⌢ Flanking Region of SLCO1B3 Causes Blue Eggshell in the Chicken. PLoS Genet. 2013, 9, e1003183. [Google Scholar] [CrossRef]
- Afonso, S.; Vanore, G.; Batlle, A. Protoporphyrin IX and oxidative stress. Free Radic. Res. 1999, 31, 161–170. [Google Scholar] [CrossRef]
- Ito, S.; Tsudzuki, M.; Komori, M.; Mizutani, M. Celadon: An eggshell color mutation in Japanese quail. J. Hered. 1993, 84, 145–147. [Google Scholar] [CrossRef]
- Carlevaro-Fita, J.; Lanzós, A.; Feuerbach, L.; Hong, C.; Mas-Ponte, D.; Pedersen, J.S.; Johnson, R.; Abascal, F.; Amin, S.B.; Bader, G.D.; et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 2020, 3, 56. [Google Scholar] [CrossRef]
- Sparber, P.; Filatova, A.; Khantemirova, M.; Skoblov, M. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med. Genom. 2019, 12, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Aznaourova, M.; Schmerer, N.; Schmeck, B.; Schulte, L.N. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front. Genet. 2020, 11, 527484. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.H.; Wang, J.W.; Li, L.; Han, C.C.; Mustafa, A.; Xiong, X. Evidences in duck (Anas platyrhynchos) by transcriptome data for supporting the biliverdin was mainly synthesized by shell gland. Poult. Sci. 2019, 98, 2260–2271. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chen, K.C.; Xu, J.M.; Li, F.W.; Ding, J.L.; Ma, Z.; Li, G.; Li, H. Insights Into mRNA and Long Non-coding RNA Profiling RNA Sequencing in Uterus of Chickens with Pink and Blue Eggshell Colors. Front. Vet. Sci. 2021, 8, 736387. [Google Scholar] [CrossRef]
- Sun, Y.H.; Qiu, L.M.; Chen, J.J.; Wang, Y.; Qian, J.; Huang, L.R.; Ma, H.T. Construction of circRNA-Associated ceRNA Network Reveals Novel Biomarkers for Esophageal Cancer. Comput. Math. Methods Med. 2020, 2020, 7958362. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Wan, X.C.; Lu, Y.L.; Zhang, Y.Y.; Huang, Y.; Xu, Y.; Liu, Y.J.; Zhao, P.Q.; Xiang, X.X.; Li, L.; et al. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med. 2020, 24, 799–813. [Google Scholar] [CrossRef]
- He, Q.Q.; Huang, L.F.; Yan, D.; Bi, J.M.; Yang, M.H.; Huang, J.; Lin, T.X. CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9. Aging 2019, 11, 11314–11328. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, P.Y.; Fan, L.; Wu, M.H. The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. Front. Immunol. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.Y.; Wang, H.B.; Peng, W.; Yue, B.L.; Fu, C.Q.; Shu, S.; Zhong, J.C.; Wang, H. Circular RNA mapping reveals CircCWC22 as a MiR-3059-x sponge in yak fat deposition by regulating HMGCL. Int. J. Biol. Macromol. 2024, 257, 128531. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Fang, D.L.; Zhang, C.Y.; Zhao, Z.R.; Liu, Y.A.; Zhao, S.J.; Zhang, N.; Xu, J.B. Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol. Ther. 2023, 31, 1739–1755. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Y.; Jiang, Y.R.; Lu, Y.X.; Hu, Z.; Du, R.R.; Zhou, Y.X.; Liu, Y.P.; Zhao, X.L.; Tian, Y.F.; Yang, C.W.; et al. Thiram exposure induces tibial dyschondroplasia in broilers via the regulation effect of circ_003084/miR-130c-5p/BMPR1A crosstalk on chondrocyte proliferation and differentiation. J. Hazard. Mater. 2024, 465, 133071. [Google Scholar] [CrossRef]
- Hafner, M.; Landgraf, P.; Ludwig, J.; Rice, A.; Ojo, T.; Lin, C.; Holoch, D.; Lim, C.; Tuschl, T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008, 44, 3–12. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Mackowiak, S.D. Identification of Novel and Known miRNAs in Deep-Sequencing Data with miRDeep2; Current Protocols in Bioinformatics; Max Delbrück Center for Molecular Medicine: Berlin, Germany, 2011; Chapter 12; pp. 12.10.11–12.10.15. [Google Scholar] [CrossRef]
- Li, B.X.; Zhang, K.Z.; Ye, Y.Q.; Xing, J.J.; Wu, Y.Y.; Ma, Y.J.; Li, Y.G. Effects of Castration on miRNA, lncRNA, and mRNA Profiles in Mice Thymus. Genes 2020, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Sanz, J.J.; Moreno, J. Egg colour reflects the amount of yolk maternal antibodies and fledging success in a songbird. Biol. Lett. 2006, 2, 334–336. [Google Scholar] [CrossRef]
- Hargitai, R.; Csaba, M.; Miklós, B.; Gil, D.; López-Rull, I.; Solymos, E. Eggshell characteristics and yolk composition in the common cuckoo Cuculus canorus: Are they adapted to brood parasitism? J. Avian Biol. 2010, 41, 177–185. [Google Scholar] [CrossRef]
- Bagheri, M.S.; Polivka, J.; Treskova, I.; Houfkova, K.; Knizkova, T.; Woznica, V.; Fikrle, T.; Pivovarcikova, K.; Svaton, M.; Shetti, D.; et al. Preoperative Plasma miRNA Levels Predict Prognosis in Early-stage Malignant Melanoma. Anticancer Res. 2023, 43, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; He, J.; Jia, X.; Jiang, J.; Bai, R.; Yu, X.; Lv, L.; Fan, R.; He, X.; Geng, J.; et al. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lama pacos) skin melanocytes. Domest. Anim. Endocrinol. 2010, 38, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, G.; Liao, J.; Tang, M.; Chen, J. Identification of key microRNAs affecting melanogenesis of breast muscle in Muchuan black-boned chickens by RNA sequencing. Br. Poult. Sci. 2020, 61, 225–231. [Google Scholar] [CrossRef]
- Sirri, F.; Zampiga, M.; Berardinelli, A. Effects of genotype and age on eggshell cuticle coverage and color profile in modern laying hen strains. Poult. Sci. 2022, 101, 101691. [Google Scholar] [CrossRef]
- de Hierro, M.; De Neve, L. Pigment limitation and female reproductive characteristics influence egg shell spottiness and ground colour variation in the house sparrow (Passer domesticus). J. Ornithol. 2010, 151, 833–840. [Google Scholar] [CrossRef]
- Liang, J.J.; Cao, D.R.; Zhang, X.W.; Liu, L.J.; Tan, Q.; Shi, S.; Chen, K.Y.; Liang, J.Y.; Wang, Z.G. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation. Theriogenology 2020, 157, 360–371. [Google Scholar] [CrossRef]
- Barrett, S.P.; Salzman, J. Circular RNAs: Analysis, expression and potential functions. Development 2016, 143, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, H.; Jiang, Y.; Hu, Z.; Du, R.; Zhao, X.; Tian, Y.; Zhu, Q.; Zhang, Y.; Liu, Y.; et al. Comprehensive analysis of differently expression mRNA and non-coding RNAs, and their regulatory mechanisms on relationship in thiram-induced tibial dyschondroplasia in chicken. Ecotoxicol. Environ. Saf. 2022, 242, 113924. [Google Scholar] [CrossRef]
- Zhang, M.; Han, Y.; Zhai, Y.H.; Ma, X.F.; An, X.L.; Zhang, S.; Li, Z.Y. Integrative analysis of circRNAs, miRNAs, and mRNAs profiles to reveal ceRNAs networks in chicken intramuscular and abdominal adipogenesis. BMC Genom. 2020, 21, 594. [Google Scholar] [CrossRef]
- Shen, M.M.; Li, T.T.; Chen, F.X.; Wu, P.F.; Wang, Y.; Chen, L.; Xie, K.Z.; Wang, J.Y.; Zhang, G.X. Transcriptomic Analysis of circRNAs and mRNAs Reveals a Complex Regulatory Network That Participate in Follicular Development in Chickens. Front. Genet. 2020, 11, 503. [Google Scholar] [CrossRef]
- Jiang, X.J.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, W.K.; Bae, K.H.; Lee, S.C.; Lee, E.W. Lipid Metabolism and Ferroptosis. Biology 2021, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wang, Y.; Yang, W.T.; Li, Z.; Zhang, X.J.; Zhou, L.; Gui, J.F. Upregulation of the PPAR signaling pathway and accumulation of lipids are related to the morphological and structural transformation of the dragon-eye goldfish eye. Sci. China-Life Sci. 2021, 64, 1031–1049. [Google Scholar] [CrossRef] [PubMed]
- Sumimoto, H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008, 275, 3249–3277. [Google Scholar] [CrossRef] [PubMed]
- Magnani, F.; Mattevi, A. Structure and mechanisms of ROS generation by NADPH oxidases. Curr. Opin. Struct. Biol. 2019, 59, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Medarde, A.; Santos, E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim. Biophys. Acta-Rev. Cancer 2011, 1815, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Shats, I.; Krahn, J.M.; Flake, G.P.; Umbach, D.M.; Li, X.; Li, L. Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma. PLoS ONE 2019, 14, e0218067. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Apostolatos, C.A.; Apostolatos, A.H.; Schutte, R.J.; Huynh, M.A.; Ostrov, D.A.; Acevedo-Duncan, M. Oncogenic PKC-ι activates Vimentin during epithelial-mesenchymal transition in melanoma; a study based on PKC-ι and PKC-ζ specific inhibitors. Cell Adh. Migr. 2018, 12, 447–463. [Google Scholar] [CrossRef]
Samplings | Known miRNAs | New miRNAs |
---|---|---|
All | 524 | 142 |
DB1 | 375 | 105 |
DB2 | 377 | 110 |
DB3 | 373 | 99 |
LB1 | 379 | 110 |
LB2 | 348 | 94 |
LB3 | 363 | 106 |
DP1 | 377 | 112 |
DP2 | 358 | 113 |
DP3 | 364 | 105 |
DP4 | 406 | 111 |
PK1 | 367 | 105 |
PK2 | 384 | 112 |
PK3 | 371 | 112 |
Comparison Groups | miRNA | log2(fc) | Expression Change | Target Genes |
---|---|---|---|---|
DB vs. PK | miR-2995-x | 5.91 | up | 723 |
novel-m0026-5p | 5.87 | up | 1473 | |
gga-miR-3528 | 4.21 | up | 297 | |
miR-423-y | −6.51 | down | 162 | |
novel-m0066-5p | −6.65 | down | 220 | |
novel-m0067-5p | −6.65 | down | 220 | |
LB vs. PK | miR-224-x | 8.72 | up | 629 |
miR-2995-x | 7.37 | up | 723 | |
novel-m0026-5p | 7.37 | up | 1473 | |
gga-miR-2984-3p | −5.07 | down | 556 | |
gga-miR-6552-3p | −7.4 | down | 556 | |
gga-miR-6552-5p | −8.49 | down | 618 | |
DP vs. PK | novel-m0093-3p | 5.32 | up | 549 |
novel-m0142-3p | 4.43 | up | 594 | |
miR-2995-x | 3.84 | up | 723 | |
miR-484-x | −3.28 | down | 471 | |
gga-miR-6544-5p | −4.51 | down | 1420 | |
novel-m0096-3p | −5.14 | down | 488 | |
DB vs. DP | novel-m0066-5p | 5.88 | up | 220 |
novel-m0067-5p | 5.88 | up | 220 | |
gga-miR-6516-3p | 5.17 | up | 300 | |
gga-miR-217-5p | −3.69 | down | 875 | |
novel-m0136-5p | −4.4 | down | 579 | |
gga-miR-6544-5p | −5.09 | down | 1420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhao, M.; Chen, K.; Xu, J.; Li, H. A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens. Genes 2024, 15, 812. https://doi.org/10.3390/genes15060812
Chen S, Zhao M, Chen K, Xu J, Li H. A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens. Genes. 2024; 15(6):812. https://doi.org/10.3390/genes15060812
Chicago/Turabian StyleChen, Siyu, Mengqiao Zhao, Kecheng Chen, Jiaming Xu, and Hua Li. 2024. "A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens" Genes 15, no. 6: 812. https://doi.org/10.3390/genes15060812
APA StyleChen, S., Zhao, M., Chen, K., Xu, J., & Li, H. (2024). A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens. Genes, 15(6), 812. https://doi.org/10.3390/genes15060812