Retinal Dystrophy Associated with Homozygous Variants in NRL
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Examinations
2.2. Genetic Testing
2.3. Segregation Analysis
2.4. Splicing Assay
3. Results
3.1. Clinical Findings
3.1.1. Patient A
3.1.2. Patient B
3.2. Identification of Homozygous Candidate Pathogenic Variants in NRL
3.2.1. Patient A
3.2.2. Patient B
3.3. Functional Analysis of a Novel Small Deletion in NRL
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussey, K.A.; Hadyniak, S.E.; Johnston, R.J. Patterning and Development of Photoreceptors in the Human Retina. Front. Cell Dev. Biol. 2022, 10, 878350. [Google Scholar] [CrossRef]
- Roorda, A.; Williams, D.R. The Arrangement of the Three Cone Classes in the Living Human Eye. Nature 1999, 397, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human Photoreceptor Topography. J. Comp. Neurol. 1990, 292, 497–523. [Google Scholar] [CrossRef]
- Luo, D.G.; Xue, T.; Yau, K.W. How Vision Begins: An Odyssey. Proc. Natl. Acad. Sci. USA 2008, 105, 9855–9862. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, A.; Bumsted-O’Brien, K.; Natoli, R.; Ramamurthy, V.; Possin, D.; Provis, J. Rod Photoreceptor Differentiation in Fetal and Infant Human Retina. Exp. Eye Res. 2008, 87, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Livesey, F.J.; Cepko, C.L. Vertebrate Neural Cell-Fate Determination: Lessons from the Retina. Nat. Rev. Neurosci. 2001, 2, 109–118. [Google Scholar] [CrossRef]
- Swaroop, A.; Kim, D.; Forrest, D. Transcriptional Regulation of Photoreceptor Development and Homeostasis in the Mammalian Retina. Nat. Rev. Neurosci. 2010, 11, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Mears, A.J.; Kondo, M.; Swain, P.K.; Takada, Y.; Bush, R.A.; Saunders, T.L.; Sieving, P.A.; Swaroop, A. Nrl Is Required for Rod Photoreceptor Development. Nat. Genet. 2001, 29, 447–452. [Google Scholar] [CrossRef]
- Cuevas, E.; Holder, D.L.; Alshehri, A.H.; Tréguier, J.; Lakowski, J.; Sowden, J.C. NRL−/− Gene Edited Human Embryonic Stem Cells Generate Rod-Deficient Retinal Organoids Enriched in S-Cone-like Photoreceptors. Stem Cells 2021, 39, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.C.T.; Cheng, H.; Hao, H.; Jia, L.; Khan, N.W.; Swaroop, A. Rod Differentiation Factor NRL Activates the Expression of Nuclear Receptor NR2E3 to Suppress the Development of Cone Photoreceptors. Brain Res. 2008, 1236, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.C.T.; Khan, N.; Novelli, E.; Khanna, H.; Strettoi, E.; Swaroop, A. Transformation of Cone Precursors to Functional Rod Photoreceptors by BZIP Transcription Factor NRL. Proc. Natl. Acad. Sci. USA 2007, 104, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Daniele, L.L.; Lillo, C.; Lyubarsky, A.L.; Nikonov, S.S.; Philp, N.; Mears, A.J.; Swaroop, A.; Williams, D.S.; Pugh, E.N. Cone-like Morphological, Molecular, and Electrophysiological Features of the Photoreceptors of the Nrl Knockout Mouse. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2156–2167. [Google Scholar] [CrossRef] [PubMed]
- Nikonov, S.S.; Daniele, L.L.; Zhu, X.; Craft, C.M.; Swaroop, A.; Pugh, E.N. Photoreceptors of Nrl−/− Mice Coexpress Functional S- and M-Cone Opsins Having Distinct Inactivation Mechanisms. J. Gen. Physiol. 2005, 125, 287–304. [Google Scholar] [CrossRef]
- Yang-Feng, T.L.; Swaroop, A. Neural Retina-Specific Leucine Zipper Gene NRL (D14S46E) Maps to Human Chromosome 14q11.1-Q11.2. Genomics 1992, 14, 491–492. [Google Scholar] [CrossRef]
- Bessant, D.A.R.; Payne, A.M.; Mitton, K.P.; Wang, Q.-L.; Swain, P.K.; Plant, C.; Bird, A.C.; Zack, D.J.; Swaroop, A.; Bhattacharya, S.S. A Mutation in NRL Is Associated with Autosomal Dominant Retinitis Pigmentosa. Nat. Genet. 1999, 21, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, K.M.; Friedman, J.S.; Sandberg, M.A.; Swaroop, A.; Berson, E.L.; Dryja, T.P. Recessive NRL Mutations in Patients with Clumped Pigmentary Retinal Degeneration and Relative Preservation of Blue Cone Function. Proc. Natl. Acad. Sci. USA 2004, 101, 17819–17824. [Google Scholar] [CrossRef] [PubMed]
- Hernan, I.; Gamundi, M.J.; Borràs, E.; Maseras, M.; García-Sandoval, B.; Blanco-Kelly, F.; Ayuso, C.; Carballo, M. Novel p.M96T Variant of NRL and ShRNA-Based Suppression and Replacement of NRL Mutants Associated with Autosomal Dominant Retinitis Pigmentosa. Clin. Genet. 2012, 82, 446–452. [Google Scholar] [CrossRef]
- Kanda, A.; Friedman, J.S.; Nishiguchi, K.M.; Swaroop, A. Retinopathy Mutations in the BZIP Protein NRL Alter Phosphorylation and Transcriptional Activity. Hum. Mutat. 2007, 28, 589–598. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, S.; Liu, C.; Qin, Y.; Archacki, S.; Jin, L.; Wang, Y.; Liu, F.; Chen, J.; Liu, Y.; et al. Whole Exome Sequencing Identifies a Novel NRL Mutation in a Chinese Family with Autosomal Dominant Retinitis Pigmentosa. Mol. Vis. 2016, 22, 234. [Google Scholar] [PubMed]
- Bessant, D.A.R.; Holder, G.E.; Fitzke, F.W.; Payne, A.M.; Bhattacharya, S.S.; Bird, A.C. Phenotype of Retinitis Pigmentosa Associated with the Ser50Thr Mutation in the NRL Gene. Arch. Ophthalmol. 2003, 121, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Littink, K.W.; Stappers, P.T.Y.; Riemslag, F.C.C.; Talsma, H.E.; Van Genderen, M.M.; Cremers, F.P.M.; Collin, R.W.J.; Van Den Born, L.I. Autosomal Recessive NRL Mutations in Patients with Enhanced S-Cone Syndrome. Genes 2018, 9, 68. [Google Scholar] [CrossRef]
- El-Asrag, M.E.; Corton, M.; McKibbin, M.; Avila-Fernandez, A.; Mohamed, M.D.; Blanco-Kelly, F.; Toomes, C.; Inglehearn, C.F.; Ayuso, C.; Ali, M. Novel Homozygous Mutations in the Transcription Factor NRL Cause Non-Syndromic Retinitis Pigmentosa. Mol. Vis. 2022, 28, 48. [Google Scholar] [PubMed]
- Newman, H.; Blumen, S.C.; Braverman, I.; Hanna, R.; Tiosano, B.; Perlman, I.; Ben-Yosef, T. Homozygosity for a Recessive Loss-of-Function Mutation of the NRL Gene Is Associated with a Variant of Enhanced S-Cone Syndrome. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5361–5371. [Google Scholar] [CrossRef]
- Iarossi, G.; Sinibaldi, L.; Passarelli, C.; Coppe’, A.M.; Cappelli, A.; Petrocelli, G.; Catena, G.; Perrone, C.; Falsini, B.; Novelli, A.; et al. A Novel Autosomal Recessive Variant of the NRL Gene Causing Enhanced S-Cone Syndrome: A Morpho-Functional Analysis of Two Unrelated Pediatric Patients. Diagnostics 2022, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.W.J.; van den Born, L.I.; Klevering, B.J.; de Castro-Miró, M.; Littink, K.W.; Arimadyo, K.; Azam, M.; Yazar, V.; Zonneveld, M.N.; Paun, C.C.; et al. High-Resolution Homozygosity Mapping Is a Powerful Tool to Detect Novel Mutations Causative of Autosomal Recessive RP in the Dutch Population. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2227–2239. [Google Scholar] [CrossRef]
- Neveling, K.; Collin, R.W.J.; Gilissen, C.; Van Huet, R.A.C.; Visser, L.; Kwint, M.P.; Gijsen, S.J.; Zonneveld, M.N.; Wieskamp, N.; De Ligt, J.; et al. Next-Generation Genetic Testing for Retinitis Pigmentosa. Hum. Mutat. 2012, 33, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Beryozkin, A.; Shevah, E.; Kimchi, A.; Mizrahi-Meissonnier, L.; Khateb, S.; Ratnapriya, R.; Lazar, C.H.; Blumenfeld, A.; Ben-Yosef, T.; Hemo, Y.; et al. Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies. Sci. Rep. 2015, 5, 13187. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.F.; Fulton, A.B.; Holder, G.E.; Miyake, Y.; Brigell, M.; Bach, M. ISCEV Standard for Full-Field Clinical Electroretinography (2008 Update). Doc. Ophthalmol. 2009, 118, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.G.; Frishman, L.J.; Grigg, J.; Hamilton, R.; Jeffrey, B.G.; Kondo, M.; Li, S.; McCulloch, D.L. ISCEV Standard for Full-Field Clinical Electroretinography (2022 Update). Doc. Ophthalmol. 2022, 144, 165–177. [Google Scholar] [CrossRef]
- Haug, P.; Koller, S.; Maggi, J.; Lang, E.; Feil, S.; Bähr, L.; Steindl, K.; Rohrbach, M.; Gerth-kahlert, C.; Berger, W. Whole Exome Sequencing in Coloboma/Microphthalmia: Identification of Novel and Recurrent Variants in Seven Genes. Genes 2021, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Maggi, J.; Koller, S.; Feil, S.; Bachmann-Gagescu, R.; Gerth-Kahlert, C.; Berger, W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int. J. Mol. Sci. 2024, 25, 6540. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of Nonneutral Substitution Rates on Mammalian Phylogenies. Genome Res. 2010, 20, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Schubach, M.; Shendure, J.; Kircher, M. CADD-Splice—Improving Genome-Wide Variant Effect Prediction Using Deep Learning-Derived Splice Scores. Genome Med. 2021, 13, 31. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- Sundaram, L.; Gao, H.; Padigepati, S.R.; McRae, J.F.; Li, Y.; Kosmicki, J.A.; Fritzilas, N.; Hakenberg, J.; Dutta, A.; Shon, J.; et al. Predicting the Clinical Impact of Human Mutation with Deep Neural. Nat. Genet. 2018, 50, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7.20.1–7.20.41. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.T.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD): 2003 Update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef]
- Fokkema, I.F.A.C.; Kroon, M.; López Hernández, J.A.; Asscheman, D.; Lugtenburg, I.; Hoogenboom, J.; den Dunnen, J.T. The LOVD3 Platform: Efficient Genome-Wide Sharing of Genetic Variants. Eur. J. Hum. Genet. 2021, 29, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Maggi, J.; Feil, S.; Gloggnitzer, J.; Maggi, K.; Bachmann-Gagescu, R.; Gerth-Kahlert, C.; Koller, S.; Berger, W. Nanopore Deep Sequencing as a Tool to Characterize and Quantify Aberrant Splicing Caused by Variants in Inherited Retinal Dystrophy Genes. Int. J. Mol. Sci. 2024, 25, 9569. [Google Scholar] [CrossRef]
- You, Y.; Clark, M.B.; Shim, H. NanoSplicer: Accurate Identification of Splice Junctions Using Oxford Nanopore Sequencing. Bioinformatics 2022, 38, 3741–3748. [Google Scholar] [CrossRef]
- Thomas, M.G.; Kumar, A.; Mohammad, S.; Proudlock, F.A.; Engle, E.C.; Andrews, C.; Chan, W.M.; Thomas, S.; Gottlob, I. Structural Grading of Foveal Hypoplasia Using Spectral Domain Optical Coherence Tomography; A Predictor of Visual Acuity? Ophthalmology 2011, 118, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Corton, M.; Avila-Fernández, A.; Campello, L.; Sánchez, M.; Benavides, B.; López-Molina, M.I.; Fernández-Sánchez, L.; Sánchez-Alcudia, R.; Da Silva, L.R.J.; Reyes, N.; et al. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Sci. Rep. 2016, 6, 35370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, Z.; Zhao, P.; Huang, L.; Xu, M.; Yang, Y.; Chen, X.; Lu, F.; Zhang, X.; Wang, H.; et al. Whole-Exome Sequencing Revealed HKDC1 as a Candidate Gene Associated with Autosomal-Recessive Retinitis Pigmentosa. Hum. Mol. Genet. 2018, 27, 4157–4168. [Google Scholar] [CrossRef]
- DeLuca, A.P.; Whitmore, S.S.; Barnes, J.; Sharma, T.P.; Westfall, T.A.; Anthony Scott, C.; Weed, M.C.; Wiley, J.S.; Wiley, L.A.; Johnston, R.M.; et al. Hypomorphic Mutations in TRNT1 Cause Retinitis Pigmentosa with Erythrocytic Microcytosis. Hum. Mol. Genet. 2016, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Farkas, M.H.; Grant, G.R.; White, J.A.; Sousa, M.E.; Consugar, M.B.; Pierce, E.A. Transcriptome Analyses of the Human Retina Identify Unprecedented Transcript Diversity and 3.5 Mb of Novel Transcribed Sequence via Significant Alternative Splicing and Novel Genes. BMC Genom. 2013, 14, 486. [Google Scholar] [CrossRef] [PubMed]
- Maggi, K.; Atac, D.; Maggi, J.; Feil, S.; Koller, S.; Berger, W. Putative Role of Norrin in Neuronal Differentiation Revealed by Bulk- and ScRNA Sequencing of Human Retinal Organoids. bioRxiv 2024, 1–27. [Google Scholar] [CrossRef]
- Atac, D.; Maggi, K.; Feil, S.; Maggi, J.; Cuevas, E.; Sowden, J.C.; Koller, S.; Berger, W. Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development. Cells 2024, 13, 1142. [Google Scholar] [CrossRef]
- Ahmed, Z.M.; Smith, T.N.; Riazuddin, S.; Makishima, T.; Ghosh, M.; Bokhari, S.; Menon, P.S.N.; Deshmukh, D.; Griffith, A.J.; Riazuddin, S.; et al. Nonsyndromic Recessive Deafness DFNB18 and Usher Syndrome Type IC Are Allelic Mutations of USHIC. Hum. Genet. 2002, 110, 527–531. [Google Scholar] [CrossRef]
- Schaefer, E.; Delvallée, C.; Mary, L.; Stoetzel, C.; Geoffroy, V.; Marks-Delesalle, C.; Holder-Espinasse, M.; Ghoumid, J.; Dollfus, H.; Muller, J. Identification and Characterization of Known Biallelic Mutations in the IFT27 (BBS19) Gene in a Novel Family with Bardet-Biedl Syndrome. Front. Genet. 2019, 10, 21. [Google Scholar] [CrossRef]
- Abu-Safieh, L.; Alrashed, M.; Anazi, S.; Alkuraya, H.; Khan, A.O.; Al-Owain, M.; Al-Zahrani, J.; Al-Abdi, L.; Hashem, M.; Al-Tarimi, S.; et al. Autozygome-Guided Exome Sequencing in Retinal Dystrophy Patients Reveals Pathogenetic Mutations and Novel Candidate Disease Genes. Genome Res. 2013, 23, 236–247. [Google Scholar] [CrossRef]
- McClements, M.E.; Elsayed, M.E.A.A.; Major, L.; de la Camara, C.M.F.; MacLaren, R.E. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol. Diagn. Ther. 2024, 28, 575–591. [Google Scholar] [CrossRef]
Gene | cNomen | Zyg. | gnomAD All (%) | ACMG | LOVD | ClinVar | HGMD | Testing Assay |
---|---|---|---|---|---|---|---|---|
SAMD11 | NM_152486.4:c.682_683insT | Het. | 0.032 | VUS | - | VUS | - | WES |
HKDC1 | NM_025130.4:c.1588G>A | Het. | 0.002 | VUS | - | - | - | WES |
TRNT1 | NM_182916.2:c.43C>T | Het. | 0.007 | VUS | VUS | VUS | - | WES |
NRL | NM_006177.3:c.-41_-28+23del | Hom. | NA | VUS | - | - | - | WGS |
Gene | cNomen | Zyg. | gnomAD All (%) | ACMG | LOVD | ClinVar | HGMD | Testing Assay |
---|---|---|---|---|---|---|---|---|
USH1C | NM_153676.4:c.1020-2A>C | Het. | 0.0001 | LP | NC | LP | - | WES |
IFT27 | NM_001177701.3:c.352+1G>T | Het. | 0.0059 | P | - | P/LP | DM | WES |
ADGRA3 | NM_145290.4:c.2T>C | Het. | 0.0001 | VUS | - | - | - | WES |
NRL | NM_006177.3:c.544C>T | Hom. | 0.0007 | P | - | Conflicting | DM | WES |
Transcript | Length | WT (%) | MT (%) | Δ MT-WT (%) | Effect on Transcript | |
---|---|---|---|---|---|---|
T1 | NRL_ex1-NRL_ex2 | 432 bp | 99.6 | 34.5 | −65.1 | WT |
T2 | NRL_ex1del1-NRL_ex2 | 453 bp | 0 | 23.3 | +23.3 | altDS_ex1del_1 |
T3 | NRL_ex1del2-NRL_ex2 | 947 bp | 0 | 10.9 | +10.9 | altDS_ex1del_2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggi, J.; Hanson, J.V.M.; Kurmann, L.; Koller, S.; Feil, S.; Gerth-Kahlert, C.; Berger, W. Retinal Dystrophy Associated with Homozygous Variants in NRL. Genes 2024, 15, 1594. https://doi.org/10.3390/genes15121594
Maggi J, Hanson JVM, Kurmann L, Koller S, Feil S, Gerth-Kahlert C, Berger W. Retinal Dystrophy Associated with Homozygous Variants in NRL. Genes. 2024; 15(12):1594. https://doi.org/10.3390/genes15121594
Chicago/Turabian StyleMaggi, Jordi, James V. M. Hanson, Lisa Kurmann, Samuel Koller, Silke Feil, Christina Gerth-Kahlert, and Wolfgang Berger. 2024. "Retinal Dystrophy Associated with Homozygous Variants in NRL" Genes 15, no. 12: 1594. https://doi.org/10.3390/genes15121594
APA StyleMaggi, J., Hanson, J. V. M., Kurmann, L., Koller, S., Feil, S., Gerth-Kahlert, C., & Berger, W. (2024). Retinal Dystrophy Associated with Homozygous Variants in NRL. Genes, 15(12), 1594. https://doi.org/10.3390/genes15121594