The First Potentially Causal Genetic Variant Documented in a Polish Woman with Multiple Cavernous Malformations of the Brain
Abstract
:1. Introduction
2. A Case Report
- -
- within the right thalamus (transverse dimensions of approx. 6 × 3.5 mm), with hemosiderin deposits,
- -
- at the fronto-parietal junction on the right side in the subcortical location (transverse dimensions of approx. 3 × 5 mm),
- -
- in the semioval center on the left side (transverse dimensions of approx. 7 × 4 mm),
- -
- within the left occipital lobe (transverse dimensions of approx. 10 × 6 mm),
- -
- in the right temporal lobe (transverse dimensions of approx. 7 × 3 mm and approx. 8 × 5 mm),
- -
- in the area of the right frontal lobe (transverse dimensions of approx. 10 × 6 mm).
3. Next-Generation Sequencing (NGS)
4. Variant Annotation and Annotation-Based Filtering
5. Sanger Sequencing
6. Genetic Testing Results
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pera, J. Review of genetic and neuroimaging tests in the diagnosis of strokes of rare etiology. Pol. Neurol. Rev. 2017, 13, 1–9. [Google Scholar]
- Morrison, L.; Akers, A. Cerebral Cavernous Malformation, Familial. In Gene Reviews; University of Washington: Seattle, WA, USA, 24 February 2003. [Google Scholar]
- Flores, B.C.; Whittemore, A.R.; Samson, D.S.; Barnett, S.L. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J. Neurosurg. 2015, 122, 653–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroedov, D.; Cunha, B.; Pamplona, J.; Castillo, M.; Ramalho, J. Cerebral cavernous malformations: Typical and atypical imaging characteristics. J. Neuroimaging 2023, 33, 185–327. [Google Scholar]
- Duckworth, E.A.M. Modern management of brainstem cavernous malformations. Neurol. Clin. 2010, 28, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Salman, R.A.-S.; Hall, J.M.; Horne, M.A.; Moultrie, F.; Josephson, C.B.; Bhattacharya, J.J.; Counsell, C.E.; Murray, G.D.; Papanastassiou, V.; Ritchie, V.; et al. Untreated clinical course of cerebral cavernous malformations: A prospective, population-based cohort study. Lancet Neurol. 2012, 11, 217–224. [Google Scholar]
- Zevgaridis, D.; van Velthoven, V.; Ebeling, U.; Reulen, H.J. Seizure control following surgery in supratentorial cavernous malformations: A retrospective study in 77 patients. Acta Neurochir. 1996, 138, 672–677. [Google Scholar] [CrossRef]
- Lashkarivand, A.; Ringstad, G.; Eide, P.K. Surgery for Brainstem Cavernous Malformations: Association between Preoperative Grade and Postoperative Quality of Life. Oper. Neurosurg. 2020, 18, 590–598. [Google Scholar] [CrossRef] [Green Version]
- Rigamonti, D.; Hadley, M.N.; Drayer, B.P.; Johnson, P.C.; Hoenig-Rigamonti, K.; Knight, J.T.; Spetzler, R.F. Cerebral cavernous malformations: Incidence and familial occurrence. N. Engl. J. Med. 1988, 319, 343–347. [Google Scholar]
- Bergametti, F.; Denier, C.; Labauge, P.; Arnoult, M.; Boetto, S.; Clanet, M.; Coubes, P.; Echenne, B.; Ibrahim, R.; Irthum, B.; et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 2005, 76, 42–51. [Google Scholar]
- Pileggi, S.; Buscone, S.; Ricci, C.; Patrosso, C.; Marocchi, A.; Brunori, P.; Battistini, S.; Penco, S. Genetic variations within KRIT1/CCM1, MGC4607/CCM2 and PDCD10/CCM3 in a large Italian family harbouring a Krit1/CCM1 mutation. J. Mol. Neurosci. 2010, 42, 235–242. [Google Scholar]
- Lin, J.; Liang, J.; Wen, J.; Luo, M.; Li, J.; Sun, X.; Xu, X.; Li, J.; Wang, D.; Wang, J.; et al. Mutations of RNF213 are responsible for sporadic cerebral cavernous malformation and lead to a mulberry-like cluster in zebrafish. J. Cereb. Blood Flow Metab. 2021, 41, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Labauge, P.; Brunereau, L.; Lévy, C.; Laberge, S.; Houtteville, J.P. The natural history of familial cerebral cavernomas: A retrospective MRI study of 40 patients. Neuroradiology 2000, 42, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.-W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015, 17, 405–424. [Google Scholar] [PubMed] [Green Version]
- Consales, A.; Piatelli, G.; Ravegnani, M.; Pavanello, M.; Striano, P.; Zoli, M.L.; Capra, V.; Rossi, A.; Garrè, M.L.; Calevo, M.G.; et al. Treatment and outcome of children with cerebral cavernomas: A survey on 32 patients. Neurol. Sci. 2010, 31, 117–123. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, R.; Marini, V.; Rinaldi, C.; Origone, P.; Dorcaratto, A.; Avolio, M.; Goitre, L.; Forni, M.; Capra, V.; Alafaci, C.; et al. Mutation Analysis of CCM1, CCM2 and CCM3 Genes in a Cohort of Italian Patients with Cerebral Cavernous Malformation. Brain Pathol. 2011, 21, 215–224. [Google Scholar] [CrossRef]
- Liquori, C.L.; Penco, S.; Gault, J.; Leedom, T.P.; Tassi, L.; Esposito, T.; Awad, I.A.; Frati, L.; Johnson, E.W.; Squitieri, F.; et al. Different spectra of genemic deletions in CCM genes between Italian and American CCM patient cohorts. Neurogenetics 2008, 9, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Liquori, C.L.; Berg, M.J.; Squitieri, F.; Leedom, T.P.; Ptacek, L.; Johnson, E.W.; Marchuk, D.A. Deletions in CCM2 are a common cause of cerebral cavernous malformations. Am. J. Hum. Genet. 2007, 80, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Patel, P.N.; Gorham, J.M.; McDonough, B.; DePalma, S.R.; Adler, E.E.; Lam, L.; MacRae, C.A.; Mohiuddin, S.M.; Fatkin, D.; et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc. Natl. Acad. Sci. USA 2017, 114, 7689–7694. [Google Scholar] [CrossRef]
- Weronska, A.; Potaczek, D.P.; Oto, J.; Medina, P.; Undas, A.; Wypasek, E. A Series of 14 Polish Patients with Thrombotic Events and PC Deficiency-Novel c.401-1G>A PROC Gene Splice Site Mutation in a Patient with Aneurysms. Genes 2022, 13, 733. [Google Scholar] [CrossRef]
- Mrożek, M.; Wypasek, E.; Alhenc-Gelas, M.; Potaczek, D.P.; Undas, A. Novel Splice Site Mutation in the PROS1 Gene in a Polish Patient with Venous Thromboembolism: C.602-2delA, Splice Acceptor Site of Exon 7. Medicina 2020, 56, 485. [Google Scholar] [CrossRef]
- Fusco, C.; Nardella, G.; Petracca, A.; Ronchi, D.; Paciello, N.; Di Giacomo, M.; Gambardella, S.; Lanfranconi, S.; Zampatti, S.; D’Agruma, L.; et al. Improving clinical interpretation of five KRIT1 and PDCD10 intronic variants. Clin. Genet. 2021, 99, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Scimone, C.; Bramanti, P.; Alafaci, C.; Granata, F.; Piva, F.; Rinaldi, C.; Donato, L.; Greco, F.; Sidoti, A.; D’Angelo, R. Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations. J. Mol. Neurosci. 2017, 61, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Mastrocola, R.; Aimaretti, A.; Alves, G.F.; Cento, A.S.; Fornelli, C.; Bello, F.D.; Ferraris, C.; Goitre, L.; Perrelli, A.; Retta, S.F. Heterozygous Loss of KRIT1 in Mice Affects Metabolic Functions of the Liver, Promoting Hepatic Oxidative and Glycative Stress. Int. J. Mol. Sci. 2022, 23, 11151. [Google Scholar] [CrossRef] [PubMed]
- Wypasek, E.; Corral, J.; Alhenc-Gelas, M.; Sydor, W.; Iwaniec, T.; Celińska-Lowenhoff, M.; Potaczek, D.P.; Blecharczyk, A.; Zawilska, K.; Musiał, J.; et al. Genetic characterization of antithrombin, protein C, and protein S deficiencies in Polish patients. Pol. Arch. Intern. Med. 2017, 127, 512–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wypasek, E.; Potaczek, D.P.; Stąpor, R.; Coucke, P.J.; De Backer, J.; De Paepe, A.M.; Undas, A. First report of the genetic background of Marfan syndrome in Polish patients. Pol. Arch. Intern. Med. 2013, 123, 646–647. [Google Scholar] [CrossRef] [Green Version]
- Lanfranconi, S.; Scola, E.; Meessen, J.M.T.A.; Pallini, R.; Bertani, G.A.; Salman, R.A.-S.; Dejana, E.; Latini, R. Treat_CCM Investigators. Safety and efficacy of propranolol for treatment of familial cerebral cavernous malformations (Treat_CCM): A randomised, open-label, blinded-endpoint, phase 2 pilot trial. Lancet. Neurol. 2023, 22, 35–44. [Google Scholar] [CrossRef]
- Polster, S.P.; Stadnik, A.; Akers, A.L.; Cao, Y.; Christoforidis, G.A.; Fam, M.D.; Flemming, K.D.; Girard, R.; Hobson, N.; Koenig, J.I.; et al. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (AT CASH EPOC) Trial. Neurosurgery 2019, 85, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Mabray, M.C.; Caprihan, A.; Nelson, J.; McCulloch, C.E.; Zafar, A.; Kim, H.; Hart, B.L.; Morrison, L. Effect of Simvastatin on Permeability in Cerebral Cavernous Malformation Type 1 Patients: Results from a Pilot Small Randomized Controlled Clinical Trial. Transl. Stroke Res. 2020, 11, 319–321. [Google Scholar]
- Fusco, C.; Nardella, G.; Di Filippo, L.; Dejana, E.; Cacchiarelli, D.; Petracca, A.; Micale, L.; Malinverno, M.; Castori, M. Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. Genes 2022, 13, 961. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczygieł-Pilut, E.; Pilut, D.; Korostynski, M.; Kopiński, P.; Potaczek, D.P.; Wypasek, E. The First Potentially Causal Genetic Variant Documented in a Polish Woman with Multiple Cavernous Malformations of the Brain. Genes 2023, 14, 1535. https://doi.org/10.3390/genes14081535
Szczygieł-Pilut E, Pilut D, Korostynski M, Kopiński P, Potaczek DP, Wypasek E. The First Potentially Causal Genetic Variant Documented in a Polish Woman with Multiple Cavernous Malformations of the Brain. Genes. 2023; 14(8):1535. https://doi.org/10.3390/genes14081535
Chicago/Turabian StyleSzczygieł-Pilut, Elżbieta, Daniel Pilut, Michal Korostynski, Piotr Kopiński, Daniel P. Potaczek, and Ewa Wypasek. 2023. "The First Potentially Causal Genetic Variant Documented in a Polish Woman with Multiple Cavernous Malformations of the Brain" Genes 14, no. 8: 1535. https://doi.org/10.3390/genes14081535
APA StyleSzczygieł-Pilut, E., Pilut, D., Korostynski, M., Kopiński, P., Potaczek, D. P., & Wypasek, E. (2023). The First Potentially Causal Genetic Variant Documented in a Polish Woman with Multiple Cavernous Malformations of the Brain. Genes, 14(8), 1535. https://doi.org/10.3390/genes14081535