Genetic History of the Altai Breed Horses: From Ancient Times to Modernity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information about the Samples
2.2. Modern Sample Mitogenome Hypervariable Region I Sequencing
2.3. Ancient Sample Mitogenome Hypervariable Region I Sequencing
2.4. Secondary Sequencing Data Analysis
2.5. Genetic Diversity Analysis
2.6. Data Availability
3. Results
3.1. Haplotype Frequencies in the Studied Horse Groups
3.2. Statistical Population Genetics Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorbunov, V.V.; Grushin, S.P.; Dashkovskiy, P.K.; Kiryushin, K.Y.; Kiryushin, Y.F.; Kungurov, A.L.; Matrenin, S.S.; Papin, D.V.; Seregin, N.N.; Stepanova, N.F.; et al. History of Altai; Tishkin, A.A., Ed.; Altai State University: Barnaul, Russia, 2019; Volume 1, ISBN 978-5-7904-2333-8. [Google Scholar]
- Mendesheva, V.M. Horse in Altaian traditional culture. Nations Relig. Eurasia 2008, 2, 250–260. [Google Scholar]
- Lobanova, T.V.; Trushnikov, V.A. Altai horse and the stages of its transformation. Bull. Altai State Agric. Univ. 2005, 17, 83–87. [Google Scholar]
- Librado, P.; Khan, N.; Fages, A.; Kusliy, M.A.; Suchan, T.; Tonasso-Calvière, L.; Schiavinato, S.; Alioglu, D.; Fromentier, A.; Perdereau, A.; et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 2021, 598, 634–640. [Google Scholar] [CrossRef]
- Pilipenko, A.S.; Romaschenko, A.G.; Molodin, V.I.; Parzinger, H.; Kobzev, V.F. Mitochondrial DNA studies of the Pazyryk people (4th to 3rd centuries BC) from northwestern Mongolia. Archaeol. Anthropol. Sci. 2010, 2, 231–236. [Google Scholar] [CrossRef]
- Keyser-Tracqui, C.; Blandin-Frappin, P.; Francfort, H.-P.; Ricaut, F.-X.; Lepetz, S.; Crubézy, E.; Samashev, Z.; Ludes, B. Mitochondrial DNA analysis of horses recovered from a frozen tomb (Berel site, Kazakhstan, 3rd Century BC). Anim. Genet. 2005, 36, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Cieslak, M.; Pruvost, M.; Benecke, N.; Hofreiter, M.; Morales, A.; Reissmann, M.; Ludwig, A. Origin and History of Mitochondrial DNA Lineages in Domestic Horses. PLoS ONE 2010, 5, e15311. [Google Scholar] [CrossRef] [Green Version]
- Fages, A.; Hanghøj, K.; Khan, N.; Gaunitz, C.; Seguin-Orlando, A.; Leonardi, M.; McCrory Constantz, C.; Gamba, C.; Al-Rasheid, K.A.S.; Albizuri, S.; et al. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell 2019, 177, 1419–1435.e31. [Google Scholar] [CrossRef] [PubMed]
- Gaunitz, C.; Fages, A.; Hanghøj, K.; Albrechtsen, A.; Khan, N.; Schubert, M.; Seguin-Orlando, A.; Owens, I.J.; Felkel, S.; Bignon-Lau, O.; et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 2018, 360, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Sild, E.; Värv, S.; Kaart, T.; Kantanen, J.; Popov, R.; Viinalass, H. Maternal and paternal genetic variation in Estonian local horse breeds in the context of geographically adjacent and distant Eurasian breeds. Anim. Genet. 2019, 50, 757–760. [Google Scholar] [CrossRef]
- Kalashnikov, V.V.; Khrabrova, L.A.; Zaitsev, A.M.; Zaitseva, M.A.; Kalinkova, L.V. Polymorphism of microsatellite DNA in horses of stud and local breeds. Agric. Biol. 2011, 2, 41–45. [Google Scholar]
- Khrabrova, L.A. Comparative analysis of the allele pool of local horse breeds by DNA markers. In Proceedings of the Aboriginal Horses Breeds: Role in Horse Breeding in the Russian Federation. Materials of the 1st All-Russia Research-to-Practice Conf. with International Participation; Bass, S.P., Poltanova, S.V., Eds.; FSBEI HE Izhevsk State Agricultural Academy: Izhevsk, Russia, 2016; pp. 171–177. [Google Scholar]
- Voronkova, V.N.; Nikolaeva, E.A.; Piskunov, A.K.; Babayan, O.V.; Takasu, M.; Tozaki, T.; Svishcheva, G.R.; Stolpovsky, Y.A. Assessment of genetic diversity and structure of Russian and Mongolian autochthonous horse breeds using nuclear and mitochondrial DNA markers. Russ. J. Genet. 2022, 58, 927–943. [Google Scholar] [CrossRef]
- Kusza, S.; Priskin, K.; Ivankovic, A.; Jedrzejewska, B.; Podgorski, T.; Jávor, A.; Mihók, S. Genetic characterization and population bottleneck in the Hucul horse based on microsatellite and mitochondrial data. Biol. J. Linn. Soc. 2013, 109, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Sziszkosz, N.; Mihók, S.; Jávor, A.; Kusza, S. Genetic diversity of the Hungarian Gidran horse in two mitochondrial DNA markers. PeerJ 2016, 4, e1894. [Google Scholar] [CrossRef] [Green Version]
- Khanshour, A.M.; Cothran, E. Maternal phylogenetic relationships and genetic variation among Arabian horse populations using whole mitochondrial DNA D-loop sequencing. BMC Genet. 2013, 14, 83. [Google Scholar] [CrossRef] [Green Version]
- Prystupa, J.M.; Hind, P.; Cothran, E.G.; Plante, Y. Maternal Lineages in Native Canadian Equine Populations and Their Relationship to the Nordic and Mountain and Moorland Pony Breeds. J. Hered. 2012, 103, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moridi, M.; Masoudi, A.A.; Vaez Torshizi, R.; Hill, E.W. Mitochondrial DNA D-loop sequence variation in maternal lineages of Iranian native horses. Anim. Genet. 2013, 44, 209–213. [Google Scholar] [CrossRef]
- Cardinali, I.; Lancioni, H.; Giontella, A.; Capodiferro, M.R.; Capomaccio, S.; Buttazzoni, L.; Biggio, G.P.; Cherchi, R.; Albertini, E.; Olivieri, A.; et al. An Overview of Ten Italian Horse Breeds through Mitochondrial DNA. PLoS ONE 2016, 11, e0153004. [Google Scholar] [CrossRef] [Green Version]
- Gemingguli, M.; Iskhan, K.R.; Li, Y.; Qi, A.; Wunirifu, W.; Ding, L.Y.; Wumaierjiang, A. Genetic diversity and population structure of Kazakh horses (Equus caballus) inferred from mtDNA sequences. Genet. Mol. Res. 2016, 15, gmr-15048618. [Google Scholar] [CrossRef]
- Cai, D.; Tang, Z.; Han, L.; Speller, C.F.; Yang, D.Y.; Ma, X.; Cao, J.; Zhu, H.; Zhou, H. Ancient DNA provides new insights into the origin of the Chinese domestic horse. J. Archaeol. Sci. 2009, 36, 835–842. [Google Scholar] [CrossRef]
- Kusliy, M.A.; Vorobieva, N.V.; Tishkin, A.A.; Makunin, A.I.; Druzhkova, A.S.; Trifonov, V.A.; Iderkhangai, T.-O.; Graphodatsky, A.S. Traces of Late Bronze and Early Iron Age Mongolian Horse Mitochondrial Lineages in Modern Populations. Genes 2021, 12, 412. [Google Scholar] [CrossRef]
- Vorobieva, N.V.; Makunin, A.I.; Druzhkova, A.S.; Kusliy, M.A.; Trifonov, V.A.; Popova, K.O.; Polosmak, N.V.; Molodin, V.I.; Vasiliev, S.K.; Shunkov, M.V.; et al. High genetic diversity of ancient horses from the Ukok Plateau. PLoS ONE 2020, 15, e0241997. [Google Scholar] [CrossRef]
- Willerslev, E.; Cooper, A. Ancient DNA. Proc. R. Soc. B Biol. Sci. 2005, 272, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Y.; Eng, B.; Waye, J.S.; Dudar, J.C.; Saunders, S.R. Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 1998, 105, 539–543. [Google Scholar] [CrossRef]
- Sanderson, C.; Radley, K.; Mayton, L. Ethylenediaminetetraacetic Acid in Ammonium Hydroxide for Reducing Decalcification Time. Biotech. Histochem. 1995, 70, 12–18. [Google Scholar] [CrossRef]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.; Ermini, L.; Sarkissian, C.D.; Jónsson, H.; Ginolhac, A.; Schaefer, R.; Martin, M.D.; Fernández, R.; Kircher, M.; McCue, M.; et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 2014, 9, 1056–1082. [Google Scholar] [CrossRef]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.F.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGahern, A.M.; Edwards, C.J.; Bower, M.A.; Heffernan, A.; Park, S.D.E.; Brophy, P.O.; Bradley, D.G.; MacHugh, D.E.; Hill, E.W. Mitochondrial DNA sequence diversity in extant Irish horse populations and in ancient horses. Anim. Genet. 2006, 37, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Kakoi, H.; Tozaki, T.; Gawahara, H. Molecular Analysis Using Mitochondrial DNA and Microsatellites to Infer the Formation Process of Japanese Native Horse Populations. Biochem. Genet. 2008, 46, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Skoglund, P.; Sjödin, P.; Skoglund, T.; Lascoux, M.; Jakobsson, M. Investigating Population History Using Temporal Genetic Differentiation. Mol. Biol. Evol. 2014, 31, 2516–2527. [Google Scholar] [CrossRef] [Green Version]
- Tishkin, A.A. The Pazyryk culture. In History of Altai. Volume 1. The Oldest Epoch, Ancientry and the Middle Ages; Tishkin, A.A., Ed.; Altai State University: Barnaul, Russia, 2019; pp. 243–255. ISBN 978-5-7904-2333-8. [Google Scholar]
- Seregin, N.N.; Tishkin, A.A. The Turkic culture. In History of Altai. Volume 1. The Oldest Epoch, Ancientry and the Middle Ages; Tishkin, A.A., Ed.; Altai State University: Barnaul, Russia, 2019; pp. 322–332. [Google Scholar]
Name of Haplogroup | Name of Ulagan Gene Pool Group Haplotypes | Name of Ulagan “Mixed” Group Haplotypes | Name of Kosh-Agach “Mixed” Group Haplotypes | Number of Studied Horses Belonging to Haplogroup |
---|---|---|---|---|
A | A + 652 (5) | A + 652 (3) | – | 8 |
B | B1 (4) | – | B1 (4) | 8 |
D | – | D2 (2), D2 + 596 (1) | – | 3 |
F | F (5), F + 584 (1) | – | F (1) | 7 |
I | – | I (3) | – | 3 |
K | K (4), K2 (8), K2b (5) | K (2), K2 (4), K2b (1) | K2 (1), K2b (1) | 26 |
K3 | K3 (21), K3a (4) | K3 (4) | K3 (2) | 31 |
X2 | X2 (6), X2b (12) | X2 (2), X2 + 528 (1) | X2 (4), X2 + 521 (3) | 28 |
X3 | X3c1 (4) | X3c1 + 632 (2) | – | 6 |
X4 | X4a (2) | X4a (4) | X4a (2) | 8 |
Group Name | Number of Horses | Number of Haplotypes | Haplotype Diversity | Number of Polymorphic Sites | Nucleotide Diversity |
---|---|---|---|---|---|
MAUM (modern Altai Ulagan “mixed”) | 29 | 12 | 0.9310 +/− 0.0199 | 23 | 0.019609 +/− 0.010986 |
MAUG (modern Altai Ulagan gene pool) | 81 | 13 | 0.8846 +/− 0.0197 | 21 | 0.018346 +/− 0.010124 |
MAKM (modern Altai Kosh-Agach “mixed”) | 18 | 8 | 0.8889 +/− 0.0416 | 16 | 0.022064 +/− 0.012482 |
MAP (modern Altai published) | 52 | 15 | 0.9201 +/− 0.0166 | 23 | 0.019970 +/− 0.010985 |
MMP (modern Mongolia published) | 231 | 68 | 0.9633 +/− 0.0042 | 41 | 0.019835 +/− 0.010754 |
AAG (ancient Altai united group) | 20 | 14 | 0.9579 +/− 0.0281 | 23 | 0.018398 +/− 0.010565 |
AMG (ancient Mongolia united group) | 12 | 8 | 0.9242 +/− 0.0575 | 15 | 0.021664 +/− 0.012679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusliy, M.A.; Yurlova, A.A.; Neumestova, A.I.; Vorobieva, N.V.; Gutorova, N.V.; Molodtseva, A.S.; Trifonov, V.A.; Popova, K.O.; Polosmak, N.V.; Molodin, V.I.; et al. Genetic History of the Altai Breed Horses: From Ancient Times to Modernity. Genes 2023, 14, 1523. https://doi.org/10.3390/genes14081523
Kusliy MA, Yurlova AA, Neumestova AI, Vorobieva NV, Gutorova NV, Molodtseva AS, Trifonov VA, Popova KO, Polosmak NV, Molodin VI, et al. Genetic History of the Altai Breed Horses: From Ancient Times to Modernity. Genes. 2023; 14(8):1523. https://doi.org/10.3390/genes14081523
Chicago/Turabian StyleKusliy, Mariya A., Anna A. Yurlova, Alexandra I. Neumestova, Nadezhda V. Vorobieva, Natalya V. Gutorova, Anna S. Molodtseva, Vladimir A. Trifonov, Kseniya O. Popova, Natalia V. Polosmak, Vyacheslav I. Molodin, and et al. 2023. "Genetic History of the Altai Breed Horses: From Ancient Times to Modernity" Genes 14, no. 8: 1523. https://doi.org/10.3390/genes14081523
APA StyleKusliy, M. A., Yurlova, A. A., Neumestova, A. I., Vorobieva, N. V., Gutorova, N. V., Molodtseva, A. S., Trifonov, V. A., Popova, K. O., Polosmak, N. V., Molodin, V. I., Vasiliev, S. K., Semibratov, V. P., Iderkhangai, T. -O., Kovalev, A. A., Erdenebaatar, D., Graphodatsky, A. S., & Tishkin, A. A. (2023). Genetic History of the Altai Breed Horses: From Ancient Times to Modernity. Genes, 14(8), 1523. https://doi.org/10.3390/genes14081523