Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach
Abstract
:1. Introduction
2. Material and Methods
2.1. Selection of Studies
2.2. Data Extraction
2.3. Data Synthesis and Analysis
3. Results
3.1. Study Characteristics
3.2. Summary Statistics
3.3. Meta-Analyses Results
Risk of Sporadic IgAN
3.4. Risk for Progression of Sporadic IgAN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, K.N.; Tang, S.C.W.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Primers 2016, 2, 16001. [Google Scholar] [CrossRef] [PubMed]
- Pattrapornpisut, P.; Avila-Casado, C.; Reich, H.N. IgA Nephropathy: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 429–441. [Google Scholar] [CrossRef]
- Floege, J.; Feehally, J. Treatment of IgA nephropathy and Henoch–Schönlein nephritis. Nat. Rev. Nephrol. 2013, 9, 320–327. [Google Scholar] [CrossRef]
- Lai, K.N. Pathogenesis of IgA nephropathy. Nat. Rev. Nephrol. 2012, 8, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Haaskjold, Y.L.; Bjørneklett, R.; Bostad, L.; Bostad, L.S.; Lura, N.G.; Knoop, T. Utilizing the MEST score for prognostic staging in IgA nephropathy. BMC Nephrol. 2022, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, L.; Shi, D.-C.; Foo, J.-N.; Zhong, Z.; Khor, C.-C.; Lanzani, C.; Citterio, L.; Salvi, E.; Yin, P.-R.; et al. Genome-Wide Meta-Analysis Identifies Three Novel Susceptibility Loci and Reveals Ethnic Heterogeneity of Genetic Susceptibility for IgA Nephropathy. J. Am. Soc. Nephrol. 2020, 31, 2949–2963. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Q.; Li, M.; Zhang, H.; Low, H.-Q.; Wei, X.; Wang, J.-Q.; Sun, L.-D.; Sim, K.-S.; Li, Y.; Foo, J.-N.; et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat. Genet. 2012, 44, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Foo, J.-N.; Wang, J.-Q.; Low, H.-Q.; Tang, X.-Q.; Toh, K.-Y.; Yin, P.-R.; Khor, C.-C.; Goh, Y.-F.; Irwan, I.D.; et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat. Commun. 2015, 6, 7270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-M.; Zhou, X.-J.; Wang, Y.-N.; Liu, X.-Z.; Wang, Y.-F.; Lau, Y.-L.; Yang, W.-L.; Zhang, H. Shared genetic study gives insights into the shared and distinct pathogenic immunity components of IgA nephropathy and SLE. Mol. Genet. Genom. 2021, 296, 1017–1026. [Google Scholar] [CrossRef]
- Kiryluk, K.; Li, Y.; Scolari, F.; Sanna-Cherchi, S.; Choi, M.; Verbitsky, M.; Fasel, D.; Lata, S.; Prakash, S.; Shapiro, S.; et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 2014, 46, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Jeong, K.H.; Kim, J.S.; Lee, Y.H.; Kim, Y.G.; Moon, J.-Y.; Kim, S.K.; Kang, S.W.; Kim, T.H.; Lee, S.H.; Kim, Y.H.; et al. Genome-wide association study identifies new susceptible loci of IgA nephropathy in Koreans. BMC Med. Genom. 2019, 12, 122. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, T.; Liu, C.; Zhu, T.; Guo, C.; Li, S.; Rao, X.; Li, J. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics 2023, 13, 303. [Google Scholar] [CrossRef]
- Roach, D.R.; Bean, A.G.D.; Demangel, C.; France, M.P.; Briscoe, H.; Britton, W.J. TNF Regulates Chemokine Induction Essential for Cell Recruitment, Granuloma Formation, and Clearance of Mycobacterial Infection. J. Immunol. 2002, 168, 4620–4627. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.Y.Y.; Leung, J.C.K.; Tsang, A.W.L.; Tang, S.C.W.; Lai, K.N. Activation of tubular epithelial cells by mesangial-derived TNF-alpha: Glomerulotubular communication in IgA nephropathy. Kidney Int. 2005, 67, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.N.; Leung, J.C.K.; Chan, L.Y.Y.; Saleem, M.A.; Mathieson, P.W.; Lai, F.M.; Tang, S.C.W. Activation of podocytes by mesangial-derived TNF-α: Glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Ren. Physiol. 2008, 294, F945–F955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, M.G., Jr.; Donadio, J.V., Jr.; Bergstralh, E.J.; Grande, J.P. Predicting Renal Outcome in IgA Nephropathy. J. Am. Soc. Nephrol. 1997, 8, 199–207. [Google Scholar] [CrossRef]
- Nedwin, G.E.; Naylor, S.L.; Sakaguchi, A.Y.; Smith, D.; Jarrett-Nedwin, J.; Pennica, D.; Goeddel, D.V.; Gray, P.W. Human Lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 1985, 13, 6361–6373. [Google Scholar] [CrossRef] [Green Version]
- Spies, T.; Morton, C.C.; A Nedospasov, S.; Fiers, W.; Pious, D.; Strominger, J.L. Genes for the tumor necrosis factors alpha and beta are linked to the human major histocompatibility complex. Proc. Natl. Acad. Sci. USA 1986, 83, 8699–8702. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.G.; Symons, J.A.; Mcdowell, T.L.; Mcdevitt, H.O.; Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor promoter on transcriptional activation (geneticsmajor histocompatibility complexcytokinegene regulationau-toimmune diseases. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, K.M.; Carville, K.S.; Abraham, L.J. The −308 Tumor Necrosis Factor-α Promoter Polymorphism Effects Transcription. Mol. Immunol. 1997, 34, 391–399. [Google Scholar] [CrossRef]
- Bouma, G.; Crusius, J.B.A.; Pool, M.O.; Kolkman, J.J.; VON Blomberg, B.M.E.; Kostense, P.J.; Giphart, M.J.; Schreuder, G.M.T.; Meuwissen, S.G.M.; Peña, A.S. Secretion of Tumour Necrosis Factor α and Lymphotoxin α in Relation to Polymorphisms in the TNF Genes and HLA-DR Alleles. Relevance for Inflammatory Bowel Disease. Scand. J. Immunol. 1996, 43, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.Y.; Yang, D.H.; Hwang, K.Y.; Hong, S.Y. Is Tumor Necrosis Factor Genotype (TNFA2/TNFA2)a Genetic Prognostic Factor of an Unfavorable Outcome in IgA Nephropathy? J. Korean Med. Sci. 2001, 16, 751–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, K.-H.; Lee, S.-H.; Cheng, C.-H.; Wu, M.-J.; Lian, J.-D. Impact of interleukin-1 receptor antagonist and tumor necrosis factor-α gene polymorphism on IgA nephropathy. Kidney Int. 2000, 58, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Syrjänen, J.; Hurme, M.; Lehtimäki, T.; Mustonen, J.; Pasternack, A. Polymorphism of the cytokine genes and IgA nephropathy. Kidney Int. 2002, 61, 1079–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuglular, S.; Berthoux, P.; Berthoux, F. Polymorphisms of the tumour necrosis factor gene at position −308 and TNFd microsatellite in primary IgA nephropathy. Nephrol. Dial. Transplant. 2003, 18, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Bantis, C.; Heering, P.; Aker, S.; Kuhr, N.; Grabensee, B.; Ivens, K. Influence of Cytokine Gene Polymorphisms on IgA Nephropathy. Ren. Fail. 2008, 30, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Sun, Y.; Fu, Y.; Yu, X.; Li, M. Interaction of C1GALT1–IL5RA on the susceptibility to IgA nephropathy in Southern Han Chinese. J. Hum. Genet. 2013, 58, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, R.; Nagasawa, Y.; Shoji, T.; Katakami, N.; Ohtoshi, K.; Hayaishi-Okano, R.; Yamasaki, Y.; Yamauchi, A.; Tsubakihara, Y.; Imai, E.; et al. A candidate gene approach to genetic contributors to the development of IgA nephropathy. Nephrol. Dial. Transplant. 2011, 27, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Zintzaras, E. The Generalized Odds Ratio as a Measure of Genetic Risk Effect in the Analysis and Meta-Analysis of Association Studies. Stat. Appl. Genet. Mol. Biol. 2010, 9, 21. [Google Scholar] [CrossRef]
- Zintzaras, E. The power of generalized odds ratio in assessing association in genetic studies with known mode of inheritance. J. Appl. Stat. 2012, 39, 2569–2581. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Baud, L.; Oudinet, J.-P.; Bens, M.; Noe, L.; Peraldi, M.-N.; Rondeau, E.; Etienne, J.; Ardaillou, R. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int. 1989, 35, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-H.; Wu, S.-C.; Huang, T.-P.; Yu, C.-L.; Tsai, C.-Y. Increased Excretion of Tumor Necrosis Factor Alpha and Interleukin 1 β in Urine from Patients with IgA Nephropathy and Schönlein-Henoch Purpura. Nephron 1996, 74, 79–88. [Google Scholar] [CrossRef]
- Matsumoto, K. Increased release of tumor necrosis factor-alpha by monocytes from patients with glomerulonephritis. Clin. Nephrol. 1993, 40, 148–154. [Google Scholar]
- Kiryluk, K.; Novak, J.; Gharavi, A.G. Pathogenesis of Immunoglobulin A Nephropathy: Recent Insight from Genetic Studies. Annu. Rev. Med. 2013, 64, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Riispere, Ž.; Laurinavičius, A.; Kuudeberg, A.; Seppet, E.; Sepp, K.; Ilmoja, M.; Luman, M.; Kõlvald, K.; Auerbach, A.; Ots-Rosenberg, M. IgA nephropathy clinicopathologic study following the Oxford classification: Progression peculiarities and gender-related differences. Medicina 2016, 52, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Monteiro, R.C.; Coppo, R.; Suzuki, H. The Phenotypic Difference of IgA Nephropathy and its Race/Gender-dependent Molecular Mechanisms. Kidney360 2021, 2, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Rovin, B.; Wong, M.G.; Alpers, C.E.; Bieler, S.; He, P.; Inrig, J.; Komers, R.; Heerspink, H.J.; Mercer, A.; et al. IgA Nephropathy Patient Baseline Characteristics in the Sparsentan PROTECT Study. Kidney Int. Rep. 2023, 8, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Beernink, J.M.; Persson, F.; Jongs, N.; Laverman, G.D.; Chertow, G.M.; McMurray, J.J.; Langkilde, A.M.; Correa-Rotter, R.; Rossing, P.; Sjöström, C.D.; et al. Efficacy of Dapagliflozin by Baseline Diabetes Medications: A Prespecified Analysis From the DAPA-CKD Study. Diabetes Care 2023, 46, 602–607. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Rauen, T.; Eitner, F.; Fitzner, C.; Sommerer, C.; Zeier, M.; Otte, B.; Panzer, U.; Peters, H.; Benck, U.; Mertens, P.R.; et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N. Engl. J. Med. 2015, 373, 2225–2236. [Google Scholar] [CrossRef]
- Frisch, G.; Lin, J.; Rosenstock, J.; Markowitz, G.; D’Agati, V.; Radhakrishnan, J.; Preddie, D.; Crew, J.; Valeri, A.; Appel, G. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: A double-blind randomized controlled trial. Nephrol. Dial. Transplant. 2005, 20, 2139–2145. [Google Scholar] [CrossRef] [Green Version]
- Maes, B.D.; Oyen, R.; Claes, K.; Evenepoel, P.; Kuypers, D.; Vanwalleghem, J.; Van Damme, B.; Vanrenterghem, Y.F.C. Mycophenolate mofetil in IgA nephropathy: Results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 2004, 65, 1842–1849. [Google Scholar] [CrossRef]
- Tang, S.C.; Tang, A.W.; Wong, S.S.; Leung, J.C.; Ho, Y.W.; Lai, K.N. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int. 2010, 77, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Zhang, H.; Cui, Z.; Su, T.; Zhang, Y.; Wang, H. Delayed severe pneumonia in mycophenolate mofetil-treated patients with IgA nephropathy. Nephrol. Dial. Transplant. 2008, 23, 2868–2872. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Kronbichler, A.; Sharma, P.; Geetha, D. Advances in Understanding of Pathogenesis and Treatment of Immune-Mediated Kidney Disease: A Review. Am. J. Kidney Dis. 2022, 79, 582–600. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, H.; Wong, M.G.; Jardine, M.J.; Hladunewich, M.; Jha, V.; Monaghan, H.; Zhao, M.; Barbour, S.; Reich, H.; et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients with IgA Nephropathy. JAMA 2017, 318, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Fellström, B.C.; Barratt, J.; Cook, H.; Coppo, R.; Feehally, J.; de Fijter, J.W.; Floege, J.; Hetzel, G.; Jardine, A.G.; Locatelli, F.; et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 2017, 389, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Simeoni, M.; Nicotera, R.; Pelagi, E.; Libri, E.; Comi, N.; Fuiano, G. Successful Use of Aliskiren in a Case of IgA- Mesangial Glomerulonephritis Unresponsive to Conventional Therapies. Rev. Recent Clin. Trials 2019, 14, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Tziastoudi, M.; Stefanidis, I.; Hadjigeorgiou, G.M.; Stravodimos, K.; Zintzaras, E. A systematic review and meta-analysis of genetic association studies for the role of inflammation and the immune system in diabetic nephropathy. Clin. Kidney J. 2017, 10, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziastoudi, M.; Stefanidis, I.; Zintzaras, E. The genetic map of diabetic nephropathy: Evidence from a systematic review and meta-analysis of genetic association studies. Clin. Kidney J. 2020, 13, 768–781. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Dardiotis, E.; Pissas, G.; Filippidis, G.; Golfinopoulos, S.; Siokas, V.; Tachmitzi, S.V.; Eleftheriadis, T.; Hadjigeorgiou, G.M.; Tsironi, E.; et al. Serpin Family E Member 1 Tag Single-Nucleotide Polymorphisms in Patients with Diabetic Nephropathy: An Association Study and Meta-Analysis Using a Genetic Model-Free Approach. Genes 2021, 12, 1887. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Theoharides, T.C.; Nikolaou, E.; Efthymiadi, M.; Eleftheriadis, T.; Stefanidis, I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 15331. [Google Scholar] [CrossRef]
- Stefanidis, I.; Tziastoudi, M.; Tsironi, E.E.; Dardiotis, E.; Tachmitzi, S.V.; Fotiadou, A.; Pissas, G.; Kytoudis, K.; Sounidaki, M.; Ampatzis, G.; et al. The contribution of genetic variants of SLC2A1 gene in T2DM and T2DM-nephropathy: Association study and meta-analysis. Ren. Fail. 2018, 40, 561–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IgA Nephropathy | HWE (p-Value) | Progression | of IgA Nephropathy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
First Author, Year | Country | Racial Descent | Selection Criteria and Demographic Data of Cases | Selection Criteria and Demographic Data of Healthy Controls | Cases (n) | Controls (n) | Selection Criteria and Demographic Data of Cases (Progressors) | Selection Criteria and Demographic Data of Controls (Non-Progressors) | Cases (n) | Controls (n) | |
Shu, 2000 [24] | China | Asians | Biopsy-proven IgA nephropathy (57 males, 54 females, mean age 30.3 years). Cases with Henoch–Schoenlein purpura not mentioned. | Healthy controls not matched to cases for age and gender; further demographic data not mentioned. | 111 | 100 | 0.5 | Increase of serum creatinine or more than 50% increase of daily proteinuria or appearance of hypertension. | Patients with stable renal disease or those in remission. | 45 | 66 |
Lee, 2001 [23] | Korea | Asians | Biopsy-proven IgA nephropathy (38 males, 38 females, mean age 30.4 years), no evidence of primary causes. Cases with Henoch–Schoenlein purpura not mentioned. | Healthy controls (49 males, 51 females, mean age 48.2 years) from the same region; not matched to cases for age and gender. | 76 | 100 | 0.9 | Patients with doubling of serum creatinine in comparison to the initial evaluation or start of hemodialysis treatment for end-stage renal disease at follow-up. | Patients without doubling of serum creatinine and no start of hemodialysis treatment for end-stage renal disease at follow-up. | 15 | 61 |
Syrjanen, 2002 [25] | Finland | Caucasians | Biopsy-proven IgA nephropathy (102 males, 65 females), no evidence of primary causes. Nine cases with Henoch–Schoenlein purpura. | Healthy blood donors (100 males, 100 females) from local center; not matched to cases for age and gender. | 167 | 400 | 0.04 | Presence of chronic renal failure (serum creatinine ≥125 μmol/L in males and ≥105 μmol/L in females) initially or rise of serum creatinine over 20% at follow-up. | Absence of chronic renal failure (serum creatinine ≥125 μmol/L in males and ≥105 μmol/L in females) initially or at follow-up. | 26 | 140 |
Tuglular, 2003 [26] | France | Caucasians | Biopsy-proven IgA nephropathy (169 males, 73 females), no evidence of primary causes. No cases with Henoch–Schoenlein purpura. | Healthy controls (133 males, 77 females) from the same region; not matched to cases for age and gender. | 242 | 210 | 0.22 | Presence of chronic renal failure according to K/DOQI Clinical Practice Guidelines (GFR < 60/min × 1.73 m2 by Cockroft–Gault equation) initially or at follow-up. | Absence of chronic renal failure according to K/DOQI Clinical Practice Guidelines (GFR < 60/min × 1.73 m2 by Cockroft–Gault equation) initially or at follow-up. | 61 | 181 |
Bantis, 2008 [27] | Germany | Caucasians | Biopsy-proven IgA nephropathy (96 males, 31 females, mean age 37.7 years). Cases with Henoch–Schoenlein purpura not mentioned. | Volunteers without kidney diseases or arterial hypertension matched for age; further demographic data not mentioned. | 127 | 100 | 0.76 | Yearly change in the reciprocal of serum creatinine levels lower than −0.1 mg−1dL (38 males, 11 females, mean age 36.6 years). | Yearly change in the reciprocal of serum creatinine levels higher than −0.1 mg−1dL (58 males, 20 females, mean age 38.4 years). | 49 | 78 |
Yamamoto, 2012 [29] | Japan | Asians | Biopsy-proven IgA nephropathy patients aged between 25 and 50 years | Healthy hospital employees aged between 25 and 50 years. | 230 | 262 | 0.80 | - | - | - | - |
Wang, 2013 [28] | China | Asians | Biopsy-proven primary IgAN with no evidence of systemic diseases such as diabetes, chronic liver disease and systemic lupus erythematosus. | Gender and age matched healthy controls with no history of renal disease or hypertension. | 527 | 543 | 0.45 | - | - | - | - |
Risk for Sporadic IgA Nephropathy | |||||||||
---|---|---|---|---|---|---|---|---|---|
Distribution of TNF-α Genotypes | |||||||||
First Author | Year | Racial | Cases/ Controls | GG | GA | AA | |||
Decent | IgAN | Controls | IgAN | Controls | IgAN | Controls | |||
Shu | 2000 | Asian | 111/100 | 99 | 79 | 11 | 19 | 1 | 2 |
Lee | 2001 | Asian | 15/61 | 45 | 65 | 26 | 31 | 5 | 4 |
Syrjanen | 2002 | Caucasian | 26/140 | 138 | 275 | 28 | 120 | 1 | 5 |
Tuglular | 2003 | Caucasian | 61/181 | 185 | 164 | 54 | 41 | 3 | 5 |
Bantis | 2008 | Caucasian | 127/100 | 96 | 71 | 26 | 27 | 5 | 2 |
Yamamoto | 2012 | Asian | 230/262 | 228 | 254 | 2 | 8 | 0 | 0 |
Wang | 2013 | Asian | 527/543 | 443 | 461 | 82 | 80 | 8 | 2 |
Risk for Progression of Sporadic IgA Nephropathy | |||||||||
---|---|---|---|---|---|---|---|---|---|
Distribution of TNF-α Genotypes | |||||||||
First Author | Year | Racial | Cases/ Controls | GG | GA | AA | |||
Decent | Pr | NPr | Pr | NPr | Pr | NPr | |||
Shu | 2000 | Asian | 45/66 | 41 | 58 | 4 | 4 | 0 | 4 |
Lee | 2001 | Asian | 76/100 | 10 | 35 | 2 | 24 | 3 | 2 |
Syrjanen | 2002 | Caucasian | 167/400 | 23 | 114 | 3 | 25 | 0 | 1 |
Tuglular | 2003 | Caucasian | 242/210 | 41 | 144 | 20 * | 37 * | ||
Bantis | 2008 | Caucasian | 49/78 | 38 | 58 | 9 | 17 | 2 | 3 |
GENE | VARIANT | RS | Studies (n) | Cases/Controls (n) | RE ORG | 95% LL | 95% UL | I2 (%) | PQ | PE |
---|---|---|---|---|---|---|---|---|---|---|
Risk for IgAN | ||||||||||
TNF-α | -308G > A | rs1800629 | 7 | 1486/1715 | 0.80 | 0.56 | 1.14 | 65.98 | 0.01 | 0.40 |
All in HWE | 6 | 1319/1315 | 0.94 | 0.70 | 1.26 | 40.71 | 0.13 | 0.65 | ||
Caucasians | 3 | 536/710 | 0.74 | 0.44 | 1.26 | 71.92 | 0.03 | 0.97 | ||
Asians | 4 | 950/1005 | 0.85 | 0.50 | 1.43 | 61.83 | 0.05 | 0.54 | ||
Risk for progression of IgAN | ||||||||||
TNF-α | -308G > A | rs1800629 | 5 | 196/526 | 1.13 | 0.74 | 1.73 | 7.13 | 0.37 | 0.40 |
All in HWE | 4 | 170/386 | 1.19 | 0.74 | 1.92 | 14.09 | 0.32 | 0.64 | ||
Caucasians | 3 | 136/399 | 1.16 | 0.61 | 2.23 | 43.80 | 0.17 | 0.97 | ||
Asians | 2 | 60/127 | 0.85 | 0.37 | 1.93 | 0.00 | 0.81 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziastoudi, M.; Chronopoulou, I.; Pissas, G.; Cholevas, C.; Eleftheriadis, T.; Stefanidis, I. Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach. Genes 2023, 14, 1488. https://doi.org/10.3390/genes14071488
Tziastoudi M, Chronopoulou I, Pissas G, Cholevas C, Eleftheriadis T, Stefanidis I. Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach. Genes. 2023; 14(7):1488. https://doi.org/10.3390/genes14071488
Chicago/Turabian StyleTziastoudi, Maria, Ioanna Chronopoulou, Georgios Pissas, Christos Cholevas, Theodoros Eleftheriadis, and Ioannis Stefanidis. 2023. "Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach" Genes 14, no. 7: 1488. https://doi.org/10.3390/genes14071488
APA StyleTziastoudi, M., Chronopoulou, I., Pissas, G., Cholevas, C., Eleftheriadis, T., & Stefanidis, I. (2023). Tumor Necrosis Factor-α G-308A Polymorphism and Sporadic IgA Nephropathy: A Meta-Analysis Using a Genetic Model-Free Approach. Genes, 14(7), 1488. https://doi.org/10.3390/genes14071488