Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Acquisition of Tissue Samples
2.3. Total RNA Extraction and Complementary DNA Synthesis
2.4. Complementary DNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction
2.5. Evaluation of Body Composition Variables
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Enrolled Patients
3.2. Prognostic Factors for OS in Patients with HBV-HCC, including the Two circRNAs
3.3. Prognostic Factors for PFS in Patients with HBV-HCC, including the Two circRNAs
3.4. Impact of Combined hsa_circ_0004018 and hsa_circ_0003570 for Predicting OS and PFS in Patients with HBV-HCC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Park, J.-W.; Lee, J.S.; Suh, K.-S.; Chung, J.W.; Seong, J.; Kim, D.Y.; Kim, J.H.; Kim, H.J.; Kim, H.Y.; Park, S.Y. 2018 Korean Liver Cancer Association-National Cancer Center Korea practice guidelines for the management of hepatocellular carcinoma. Gut Liver 2019, 13, 227–299. [Google Scholar]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Y.; Wu, L.; Zhang, Y.; Yoo, S.; Chen, Q.; Liu, S.; Hou, Y.; Chen, X.P.; Chen, Q.; et al. HBV genome-enriched single cell sequencing revealed heterogeneity in HBV-driven hepatocellular carcinoma (HCC). BMC Med. Genom. 2022, 15, 134. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.S.; Wang, W.H. Circular RNAs in hepatocellular carcinoma: Recent advances. World J. Gastrointest. Oncol. 2022, 14, 1067–1085. [Google Scholar] [CrossRef]
- Liao, R.; Liu, L.; Zhou, J.; Wei, X.; Huang, P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 697747. [Google Scholar] [CrossRef] [PubMed]
- Han, T.S.; Hur, K.; Cho, H.S.; Ban, H.S. Epigenetic Associations between lncRNA/circRNA and miRNA in Hepatocellular Carcinoma. Cancers 2020, 12, 2622. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Qiu, L.P.; Wu, Y.H.; Yu, X.F.; Tang, Q.; Chen, L.; Chen, K.P. The Emerging Role of Circular RNAs in Hepatocellular Carcinoma. J. Cancer 2018, 9, 1548–1559. [Google Scholar] [CrossRef]
- Zhu, P.; Liang, H.; Huang, X.; Zeng, Q.; Liu, Y.; Lv, J.; Ming, L. Circular RNA Hsa_circ_0004018 Inhibits Wnt/beta-Catenin Signaling Pathway by Targeting microRNA-626/DKK3 in Hepatocellular Carcinoma. OncoTargets Ther. 2020, 13, 9351–9364. [Google Scholar] [CrossRef]
- Fu, L.; Wu, S.; Yao, T.; Chen, Q.; Xie, Y.; Ying, S.; Chen, Z.; Xiao, B.; Hu, Y. Decreased expression of hsa_circ_0003570 in hepatocellular carcinoma and its clinical significance. J. Clin. Lab. Anal. 2018, 32, e22239. [Google Scholar] [CrossRef]
- Fu, L.Y.; Yao, T.; Chen, Q.Q.; Mo, X.Y.; Hu, Y.R.; Guo, J.M. Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 2017, 8, 58405–58416. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, M.; Bi, X.; Hao, L.; Liu, R.; Zhang, H. ESR1 mediated circ_0004018 suppresses angiogenesis in hepatocellular carcinoma via recruiting FUS and stabilizing TIMP2 expression. Exp. Cell Res. 2021, 408, 112804. [Google Scholar] [CrossRef]
- Jang, S.Y.; Kim, G.; Tak, W.Y.; Kweon, Y.O.; Lee, Y.R.; Han, Y.S.; Han, J.R.; Park, J.G.; Kang, M.K.; Lee, H.W.; et al. Circular Noncoding RNA hsa_circ_0003570 as a Prognostic Biomarker for Hepatocellular Carcinoma. Genes 2022, 13, 1484. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Suh, B.; Park, S.; Shin, D.W.; Yun, J.M.; Yang, H.K.; Yu, S.J.; Shin, C.I.; Kim, J.S.; Ahn, E.; Lee, H.; et al. High Liver Fibrosis Index FIB-4 Is Highly Predictive of Hepatocellular Carcinoma in Chronic Hepatitis B Carriers. Hepatology 2015, 61, 1261–1268. [Google Scholar] [CrossRef]
- Kim, M.; Lee, Y.; Yoon, J.S.; Lee, M.; Kye, S.S.; Kim, S.W.; Cho, Y. The FIB-4 Index Is a Useful Predictor for the Development of Hepatocellular Carcinoma in Patients with Coexisting Nonalcoholic Fatty Liver Disease and Chronic Hepatitis B. Cancers 2021, 13, 2301. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Kim, G.; Han, J.R.; Park, S.Y.; Tak, W.Y.; Kweon, Y.-O.; Lee, Y.R.; Han, Y.S.; Park, J.G.; Kang, M.K.; Lee, H.W. Circular noncoding RNA hsa_circ_0005986 as a prognostic biomarker for hepatocellular carcinoma. Sci. Rep. 2021, 11, 14930. [Google Scholar] [CrossRef]
- Paris, M.T.; Tandon, P.; Heyland, D.K.; Furberg, H.; Premji, T.; Low, G.; Mourtzakis, M. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. 2020, 39, 3049–3055. [Google Scholar] [CrossRef]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017, 23, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Q.; Cui, W.; Li, W.; Zhang, J. Circ_0004018 suppresses cell proliferation and migration in hepatocellular carcinoma via miR-1197/PTEN/PI3K/AKT signaling pathway. Cell Cycle 2021, 20, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, F.M.; Lei, X.; Li, J.T.; Li, F.; Tan, H.B. hsa_circ_0004018 suppresses the progression of liver fibrosis through regulating the hsa-miR-660-3p/TEP1 axis. Aging 2020, 12, 11517–11529. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.Q.; You, A.B.; Zhu, X.D.; Zhang, W.; Zhang, Y.Y.; Zhang, S.Z.; Zhang, K.W.; Cai, H.; Shi, W.K.; Li, X.L.; et al. miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J. Hematol. Oncol. 2018, 11, 12. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W.; Guo, D.; Li, Y.; Zhao, Y.; Ren, M.; Lu, G.; Lu, X.; He, S. Circ_0003570 Suppresses the progression of hepatocellular carcinoma through miR-182-5p/STARD13 regulatory axis. Biol. Proced. Online 2022, 24, 14. [Google Scholar] [CrossRef]
- Marasco, G.; Serenari, M.; Renzulli, M.; Alemanni, L.V.; Rossini, B.; Pettinari, I.; Dajti, E.; Ravaioli, F.; Golfieri, R.; Cescon, M.; et al. Clinical impact of sarcopenia assessment in patients with hepatocellular carcinoma undergoing treatments. J. Gastroenterol. 2020, 55, 927–943. [Google Scholar] [CrossRef]
- Zoico, E.; Rossi, A.; Di Francesco, V.; Sepe, A.; Olioso, D.; Pizzini, F.; Fantin, F.; Bosello, O.; Cominacini, L.; Harris, T.B.; et al. Adipose Tissue Infiltration in Skeletal Muscle of Healthy Elderly Men: Relationships with Body Composition, Insulin Resistance, and Inflammation at the Systemic and Tissue Level. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2010, 65, 295–299. [Google Scholar] [CrossRef]
- Kelley, D.E.; Goodpaster, B.H.; Storlien, L. Muscle triglyceride and insulin resistance. Annu. Rev. Nutr. 2002, 22, 325–346. [Google Scholar] [CrossRef]
- Gilsanz, V.; Kremer, A.; Mo, A.O.; Wren, T.A.; Kremer, R. Vitamin D status and its relation to muscle mass and muscle fat in young women. J. Clin. Endocrinol. Metab. 2010, 95, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, K.W.; Ko, Y.; Jang, I.Y.; Lee, Y.S.; Chung, Y.H.; Lee, H.C.; Lim, Y.S.; Kim, K.M.; Shim, J.H.; et al. The role of muscle depletion and visceral adiposity in HCC patients aged 65 and over undergoing TACE. BMC Cancer 2021, 21, 1164. [Google Scholar] [CrossRef] [PubMed]
- Cheng, E.; Kirley, J.; Cespedes Feliciano, E.M.; Caan, B.J. Adiposity and cancer survival: A systematic review and meta-analysis. Cancer Causes Control 2022, 33, 1219–1246. [Google Scholar] [CrossRef] [PubMed]
- Arthur, S.T.; Cooley, I.D. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int. J. Biol. Sci. 2012, 8, 731–760. [Google Scholar] [CrossRef] [PubMed]
Parameter | Hepatitis B Virus-Related HCC (n = 86) |
---|---|
Age | 57.0 [52.0–65.0] |
Male, n (%) | 73 (84.9) |
Body mass index, kg/m2 | 23.5 [21.7–25.7] |
Liver function profiles | |
Aspartate aminotransferase, IU/L | 51.0 [27.0–74.0] |
Alanine aminotransferase, IU/L | 78.5 [43.0–96.0] |
Platelet count, ×109/μL | 151.0 [115.0–193.0] |
Total bilirubin, mg/dL | 0.7 [0.5–1.2] |
Serum albumin, g/dL | 3.9 [3.5–4.2] |
Prothrombin time, INR | 1.1 [1.1–1.2] |
Fibrosis-4 index | 3.0 [1.8–5.0] |
Tumor profiles | |
Tumor number, multiple | 38 (44.2) |
Tumor size, >5 cm | 24 (27.9) |
T stage, T0,1,2/3,4 | 47 (54.7)/39 (45.3) |
N stage, N0/1 | 81 (94.2)/5 (5.8) |
M stage, M0/1 | 77 (89.5)/9 (10.5) |
TNM stage, I/II/III/IV | 41 (47.7)/11 (12.8)/22 (25.6)/12 (14.0) |
BCLC, 0, A/B, C | 43 (50.0)/43 (50.0) |
α fetoprotein, ng/mL | 137.0 [7.5–4814.0] |
Advanced fibrosis, n (%) * | 47 (54.7) |
CTP class, A/B/C, n (%) | 76 (88.4)/9 (10.4)/1 (1.2) |
Biomarker profiles, expression level | |
hsa_circ_0004018, normal tissue | 0.0006 [0.0003–0.0009] |
hsa_circ_0004018, tumor | 0.0003 [0.0001–0.0006] |
hsa_circ_0003570, normal tissue | 0.0009 [0.0007–0.0013] |
hsa_circ_0003570, tumor | 0.0006 [0.0004–0.0012] |
Body composition profile | |
Skeletal muscle mass index, cm2/m2 | 48.8 [42.4–53.0] |
Subcutaneous adipose tissue index, cm2/m2 | 38.6 [24.4–48.8] |
Visceral adipose tissue index, cm2/m2 | 66.7 [50.2–86.1] |
Sarcopenia, n (%) | 48 (55.8) |
Visceral adiposity, n (%) | 27 (31.4) |
Clinical outcomes | |
Death, n (%) | 50 (58.1) |
Progression, n (%) | 63 (73.3) |
Duration of overall survival, mon | 73.6 [12.3–133.1] |
Duration of progression-free survival, mon | 34.4 [9.8–85.5] |
Variable | hsa_circ_0004018 (n = 86) | hsa_circ_0003570 (n = 86) | ||||
---|---|---|---|---|---|---|
Low (n = 43) | High (n = 43) | p-Value | Low (n = 43) | High (n = 43) | p-Value | |
Age | 56.0 [51.5–65.5] | 58.0 [52.5–62.0] | 0.662 | 54.0 [49.5–62.5] | 58.0 [54.4–66.5] | 0.07 |
Male, n (%) | 36 (83.7) | 37 (95.0) | >0.99 | 38 (88.4) | 35 (81.4) | 0.547 |
Body mass index, kg/m2 | 23.6 [21.8–25.8] | 23.5 [21.6–25.1] | 0.686 | 23.6 [21.8–25.0] | 23.1 [21.5–26.0] | 0.959 |
Liver function profiles | ||||||
Total bilirubin, mg/dL | 0.6 [0.5–0.9] | 0.8 [0.6–1.2] | 0.158 | 0.8 [0.5–1.3] | 0.7 [0.5–1.0] | 0.749 |
Serum albumin, g/dL | 3.8 [3.3–4.2] | 3.9 [3.5–4.1] | 0.606 | 3.8 [3.5–4.1] | 3.9 [3.5–4.2] | 0.208 |
Prothrombin time, INR | 1.2 [1.1–1.2] | 1.1 [1.0–1.2] | 0.138 | 1.2 [1.1–1.2] | 1.1 [1.0–1.2] | 0.058 |
Fibrosis-4 index | 3.0 [1.7–5.0] | 3.2 [1.9–4.7] | 0.85 | 3.2 [2.0–5.4] | 2.4 [1.8–4.4] | 0.27 |
Tumor profiles | ||||||
TNM stage, I/II/III/IV, n | 24/4/10/5 | 17/7/12/7 | 0.47 | 18/3/14/8 | 23/8/8/4 | 0.119 |
BCLC, 0,A/B,C, n (%) | 21 (48.8)/22 (51.2) | 22 (51.2)/21(48.8) | >0.99 | 16 (37.2)/27 (62.8) | 27 (62.8)/16 (37.2) | 0.031 |
α-fetoprotein, ng/mL | 127.3 [5.4–8050.0] | 144.7 [10.8–3364.0] | 0.933 | 1000.0 [35.4–16545.5] | 22.1 [6.6–269.3] | 0.009 |
Advanced fibrosis, n (%) | 24 (55.8) | 23 (53.5) | >0.99 | 28 (65.1) | 19 (44.2) | 0.083 |
CTP class, A/B,C, n (%) | 39 (90.7)/4 (9.3) | 37 (86.0)/6 (14.0) | 0.737 | 37 (86.0)/6(14.0) | 39 (90.7)/4 (9.3) | 0.737 |
Body composition profiles | ||||||
Sarcopenia, n (%) | 26 (60.5) | 22 (51.2) | 0.515 | 26 (60.5) | 22 (51.2) | 0.515 |
Visceral adiposity, n (%) | 17 (39.5) | 10 (23.3) | 0.163 | 15 (34.9) | 12 (27.9) | 0.642 |
Variable | Overall Survival | Progression-Free Survival | ||||||
---|---|---|---|---|---|---|---|---|
Univariate p-Value | Multivariate | Univariate p-Value | Multivariate | |||||
Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value | |||
Age | 0.138 | 0.047 | ||||||
Male (yes/no) | 0.309 | 0.255 | ||||||
T stage (T3,4 vs. T0,1,2) | <0.001 | 6.142 | 3.081–12.242 | <0.001 | <0.001 | 5.040 | 2.547–9.974 | <0.001 |
N stage (N1 vs. N0) | <0.001 | 3.397 | 1.172–9.849 | 0.024 | <0.001 | |||
M stage (M1 vs. M0) | <0.001 | 2.506 | 1.062–5.913 | 0.036 | <0.001 | |||
α-fetoprotein (≥200 ng/mL) | <0.001 | <0.001 | ||||||
CTP class (B, C vs. A) | <0.001 | 4.107 | 1.786–9.444 | <0.001 | <0.001 | 2.908 | 1.345–6.285 | 0.007 |
Advanced fibrosis | 0.002 | 0.016 | ||||||
Sarcopenia | 0.114 | 2.026 | 1.103–3.722 | 0.023 | 0.164 | |||
Visceral adiposity | 0.128 | 0.029 | 0.445 | 0.238–0.830 | 0.011 | |||
hsa_circ_0004018 (high vs. low) | 0.318 | 0.195 | 0.435 | 0.242–0.782 | 0.005 | |||
hsa_circ_0003570 (high vs. low) | 0.005 | 0.437 | 0.235–0.813 | 0.009 | 0.039 |
Variable | No Combination Groups (n = 55) | Combination Groups(n = 31) | p-Value |
---|---|---|---|
Age | 57.0 [51.5–64.0] | 58.0 [55.0–65.5] | 0.134 |
Male, n (%) | 48 (87.3) | 25 (80.6) | 0.610 |
Body mass index, kg/m2 | 23.7 [21.8–25.8] | 23.1 [23.7–24.8] | 0.284 |
Liver function profiles | |||
Total bilirubin, mg/dL | 0.7 [0.5–1.2] | 0.8 [0.6–1.1] | 0.269 |
Serum albumin, g/dL | 3.8 [3.3–4.2] | 3.9 [3.6–4.2] | 0.339 |
Prothrombin time, INR | 1.1 [1.1–1.2] | 1.1 [1.0–1.2] | 0.083 |
Fibrosis-4 index | 3.0 [1.7–5.0] | 2.6 [1.9–4.7] | 0.957 |
Tumor profiles | |||
TNM stage, I/II/III/IV, n | 27/6/14/8 | 14/5/8/4 | 0.913 |
BCLC, 0,A/B,C | 25 (45.5)/30 (54.5) | 18 (58.1)/13 (41.9) | 0.369 |
α-fetoprotein, ng/mL | 223.4 [8.4–8359.0] | 70.0 [7.5–365.9] | 0.184 |
Advanced fibrosis, n (%) | 32 (58.2) | 15 (48.4) | 0.515 |
CTP class, A/B,C, n (%) | 48 (87.3)/7 (12.7) | 28 (90.3)/3 (9.7) | 0.942 |
Body composition profiles | |||
Sarcopenia, n (%) | 31 (56.4) | 17 (54.8) | 1.000 |
Visceral adiposity, n (%) | 19 (34.5) | 8 (25.8) | 0.551 |
Clinical outcomes | |||
Death, n (%) | 35 (63.6) | 15 (48.4) | 0.251 |
Progression, n (%) | 42 (76.4) | 21 (67.7) | 0.539 |
Duration of overall survival, mon | 33.9 [9.3–130.8] | 119.0 [45.1–133.9] | 0.093 |
Duration of progression-free survival, mon | 20.5 [8.04–58.6] | 59.9 [19.8–124.2] | 0.024 |
Variable | Overall Survival | Progression-Free Survival | ||||||
---|---|---|---|---|---|---|---|---|
Univariate p-Value | Multivariate | Univariate p-Value | Multivariate | |||||
Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value | |||
Age | 0.138 | 0.047 | ||||||
Male (yes/no) | 0.309 | 0.255 | ||||||
T stage (T3,4 vs. T0,1,2) | <0.001 | 7.613 | 3.792–15.284 | <0.001 | <0.001 | 5.253 | 2.612–10.564 | <0.001 |
N stage (N1 vs. N0) | <0.001 | 3.398 | 1.178–9.806 | 0.024 | <0.001 | |||
M stage (M1 vs. M0) | <0.001 | 2.645 | 1.120–6.249 | 0.027 | <0.001 | |||
α-fetoprotein (≥200 ng/mL) | <0.001 | <0.001 | ||||||
CTP class (B,C vs. A) | <0.001 | 3.827 | 1.722–8.504 | 0.001 | <0.001 | 3.475 | 1.616–7.470 | 0.001 |
Advanced fibrosis | 0.002 | 0.016 | ||||||
Sarcopenia | 0.114 | 2.034 | 1.110–3.728 | 0.022 | 0.164 | 1.895 | 1.094–3.282 | 0.023 |
Visceral adiposity | 0.128 | 0.029 | 0.435 | 0.233–0.814 | 0.009 | |||
Combination group | 0.082 | 0.399 | 0.209–0.765 | 0.005 | 0.195 | 0.422 | 0.237–0.751 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.-K.; Kim, G.; Park, J.G.; Jang, S.Y.; Lee, H.W.; Tak, W.Y.; Kweon, Y.O.; Park, S.Y.; Lee, Y.R.; Hur, K. Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma. Genes 2023, 14, 1963. https://doi.org/10.3390/genes14101963
Kang M-K, Kim G, Park JG, Jang SY, Lee HW, Tak WY, Kweon YO, Park SY, Lee YR, Hur K. Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma. Genes. 2023; 14(10):1963. https://doi.org/10.3390/genes14101963
Chicago/Turabian StyleKang, Min-Kyu, Gyeonghwa Kim, Jung Gil Park, Se Young Jang, Hye Won Lee, Won Young Tak, Young Oh Kweon, Soo Young Park, Yu Rim Lee, and Keun Hur. 2023. "Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma" Genes 14, no. 10: 1963. https://doi.org/10.3390/genes14101963
APA StyleKang, M.-K., Kim, G., Park, J. G., Jang, S. Y., Lee, H. W., Tak, W. Y., Kweon, Y. O., Park, S. Y., Lee, Y. R., & Hur, K. (2023). Tissue Circular RNA_0004018 and 0003570 as Novel Prognostic Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma. Genes, 14(10), 1963. https://doi.org/10.3390/genes14101963