Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Hungarian TSC Biobank
2.2. Study Group: TSC NMI Patients
2.3. DNA Extraction
2.4. Whole Exome Sequencing (WES)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osborne, J.P.; Fryer, A.; Webb, D. Epidemiology of tuberous sclerosis. Ann. N. Y. Acad. Sci. 1991, 615, 125–127. [Google Scholar] [CrossRef]
- Hallett, L.; Foster, T.; Liu, Z.; Blieden, M.; Valentim, J. Burden of disease and unmet needs in tuberous sclerosis complex with neurological manifestations: Systematic review. Curr. Med. Res. Opin. 2011, 27, 1571–1583. [Google Scholar] [CrossRef]
- Hong, C.H.; Darling, T.N.; Lee, C.H. Prevalence of tuberous sclerosis complex in Taiwan: A national population-based study. Neuroepidemiology 2009, 33, 335–341. [Google Scholar] [CrossRef]
- Shepherd, C.W.; Beard, C.M.; Gomez, M.R.; Kurland, L.T.; Whisnant, J.P. Tuberous sclerosis complex in Olmsted County, Minnesota, 1950–1989. Arch. Neurol. 1991, 48, 400–401. [Google Scholar] [CrossRef] [PubMed]
- Hyman, M.H.; Whittemore, V.H. National Institutes of Health consensus conference: Tuberous sclerosis complex. Arch. Neurol. 2000, 57, 662–665. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, F.J.; Shiell, A.W.; Osborne, J.P.; Martyn, C.N. Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet 1998, 351, 1490. [Google Scholar] [CrossRef]
- Crino, P.B.; Nathanson, K.L.; Henske, E.P. The tuberous sclerosis complex. N. Engl. J. Med. 2006, 355, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Curatolo, P.; Bombardieri, R.; Jozwiak, S. Tuberous sclerosis. Lancet 2008, 372, 657–668. [Google Scholar] [CrossRef]
- Napolioni, V.; Moavero, R.; Curatolo, P. Recent advances in neurobiology of Tuberous Sclerosis Complex. Brain Dev. 2009, 31, 104–113. [Google Scholar] [CrossRef]
- Nellist, M.; Brouwer, R.W.; Kockx, C.E.; van Veghel-Plandsoen, M.; Withagen-Hermans, C.; Prins-Bakker, L.; Hoogeveen-Westerveld, M.; Mrsic, A.; van den Berg, M.M.; Koopmans, A.E.; et al. Targeted Next Generation Sequencing reveals previously unidentified TSC1 and TSC2 mutations. BMC Med. Genet. 2015, 16, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, D.A.; Northrup, H.; International Tuberous Sclerosis Complex Consensus Grup. Tuberous sclerosis complex surveillance and management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric Neurol. 2013, 49, 255–265. [Google Scholar] [CrossRef] [Green Version]
- DiMario, F.J., Jr. Brain abnormalities in tuberous sclerosis complex. J. Child Neurol. 2004, 19, 650–657. [Google Scholar] [CrossRef]
- Chu-Shore, C.J.; Major, P.; Camposano, S.; Muzykewicz, D.; Thiele, E.A. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010, 51, 1236–1241. [Google Scholar] [CrossRef] [Green Version]
- D’Agati, E.; Moavero, R.; Cerminara, C.; Curatolo, P. Attention-deficit hyperactivity disorder (ADHD) and tuberous sclerosis complex. J. Child Neurol. 2009, 24, 1282–1287. [Google Scholar] [CrossRef]
- Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015, 14, 733–745. [Google Scholar] [CrossRef]
- Dixon, B.P.; Hulbert, J.C.; Bissler, J.J. Tuberous sclerosis complex renal disease. Nephron. Exp. Nephrol. 2011, 118, e15–e20. [Google Scholar] [CrossRef]
- Au, K.S.; Ward, C.H.; Northrup, H. Tuberous sclerosis complex: Disease modifiers and treatments. Curr. Opin. Pediatrics 2008, 20, 628–633. [Google Scholar] [CrossRef]
- van Slegtenhorst, M.; de Hoogt, R.; Hermans, C.; Nellist, M.; Janssen, B.; Verhoef, S.; Lindhout, D.; van den Ouweland, A.; Halley, D.; Young, J.; et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277, 805–808. [Google Scholar] [CrossRef]
- European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993, 75, 1305–1315. [Google Scholar] [CrossRef]
- Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Gai, Z.; Chu, W.; Deng, W.; Li, W.; Li, H.; He, A.; Nellist, M.; Wu, G. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region. J. Mol. Cell Biol. 2016, 8, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Dabora, S.L.; Jozwiak, S.; Franz, D.N.; Roberts, P.S.; Nieto, A.; Chung, J.; Choy, Y.S.; Reeve, M.P.; Thiele, E.; Egelhoff, J.C.; et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 2001, 68, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Sancak, O.; Nellist, M.; Goedbloed, M.; Elfferich, P.; Wouters, C.; Maat-Kievit, A.; Zonnenberg, B.; Verhoef, S.; Halley, D.; van den Ouweland, A. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: Genotype--phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. EJHG 2005, 13, 731–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, P.; Kandaswamy, K.K.; Weiss, M.E.R.; Paknia, O.; Werber, M.; Bertoli-Avella, A.M.; Yuksel, Z.; Bochinska, M.; Oprea, G.E.; Kishore, S.; et al. Development of an evidence-based algorithm that optimizes sensitivity and specificity in ES-based diagnostics of a clinically heterogeneous patient population. Genet. Med. Off. J. Am. Coll. Med Genet. 2019, 21, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Kozlowski, P.; Taillon, B.E.; Bouffard, P.; Holmes, A.J.; Janne, P.; Camposano, S.; Thiele, E.; Franz, D.; Kwiatkowski, D.J. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum. Genet. 2010, 127, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Tyburczy, M.E.; Dies, K.A.; Glass, J.; Camposano, S.; Chekaluk, Y.; Thorner, A.R.; Lin, L.; Krueger, D.; Franz, D.N.; Thiele, E.A.; et al. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet. 2015, 11, e1005637. [Google Scholar] [CrossRef]
- Suspitsin, E.N.; Yanus, G.A.; Dorofeeva, M.Y.; Ledashcheva, T.A.; Nikitina, N.V.; Buyanova, G.V.; Saifullina, E.V.; Sokolenko, A.P.; Imyanitov, E.N. Pattern of TSC1 and TSC2 germline mutations in Russian patients with tuberous sclerosis. J. Hum. Genet. 2018, 63, 597–604. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, C.; Chen, M.; Yu, X.; Sun, M.; Yan, H.; Zhao, W.; Yu, S. Mutation landscape of TSC1/TSC2 in Chinese patients with tuberous sclerosis complex. J. Hum. Genet. 2021, 66, 227–236. [Google Scholar] [CrossRef]
- van Slegtenhorst, M.; Verhoef, S.; Tempelaars, A.; Bakker, L.; Wang, Q.; Wessels, M.; Bakker, R.; Nellist, M.; Lindhout, D.; Halley, D.; et al. Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: No evidence for genotype-phenotype correlation. J. Med. Genet. 1999, 36, 285–289. [Google Scholar]
- Rossetti, S.; Torra, R.; Coto, E.; Consugar, M.; Kubly, V.; Malaga, S.; Navarro, M.; El-Youssef, M.; Torres, V.E.; Harris, P.C. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int. 2003, 64, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.J.; Hogan, M.C.; Rossetti, S.; Walker, D.; Sneddon, T.; Wang, X.; Kubly, V.; Cunningham, J.M.; Bacallao, R.; Ishibashi, M.; et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 2002, 30, 259–269. [Google Scholar] [CrossRef]
- Adeva, M.; El-Youssef, M.; Rossetti, S.; Kamath, P.S.; Kubly, V.; Consugar, M.B.; Milliner, D.M.; King, B.F.; Torres, V.E.; Harris, P.C. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine 2006, 85, 1–21. [Google Scholar] [CrossRef]
- Bergmann, C.; Senderek, J.; Windelen, E.; Kupper, F.; Middeldorf, I.; Schneider, F.; Dornia, C.; Rudnik-Schoneborn, S.; Konrad, M.; Schmitt, C.P.; et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005, 67, 829–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avni, F.E.; Guissard, G.; Hall, M.; Janssen, F.; DeMaertelaer, V.; Rypens, F. Hereditary polycystic kidney diseases in children: Changing sonographic patterns through childhood. Pediatric Radiol. 2002, 32, 169–174. [Google Scholar] [CrossRef]
- Bergmann, C.; Senderek, J.; Sedlacek, B.; Pegiazoglou, I.; Puglia, P.; Eggermann, T.; Rudnik-Schoneborn, S.; Furu, L.; Onuchic, L.F.; De Baca, M.; et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J. Am. Soc. Nephrol. JASN 2003, 14, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Huber, T.B.; Walz, G.; Kuehn, E.W. mTOR and rapamycin in the kidney: Signaling and therapeutic implications beyond immunosuppression. Kidney Int. 2011, 79, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA 2006, 103, 5466–5471. [Google Scholar] [CrossRef] [Green Version]
- Kahle, K.T.; Merner, N.D.; Friedel, P.; Silayeva, L.; Liang, B.; Khanna, A.; Shang, Y.; Lachance-Touchette, P.; Bourassa, C.; Levert, A.; et al. Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy. EMBO Rep. 2014, 15, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Puskarjov, M.; Seja, P.; Heron, S.E.; Williams, T.C.; Ahmad, F.; Iona, X.; Oliver, K.L.; Grinton, B.E.; Vutskits, L.; Scheffer, I.E.; et al. A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation. EMBO Rep. 2014, 15, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, K.; Shimizu, K. Hypogenesis of bilateral internal carotid artery. Brain Nerve 1957, 9, 37–43. [Google Scholar]
- Suzuki, J. Moyamoya Disease; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Liu, W.; Morito, D.; Takashima, S.; Mineharu, Y.; Kobayashi, H.; Hitomi, T.; Hashikata, H.; Matsuura, N.; Yamazaki, S.; Toyoda, A.; et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE 2011, 6, e22542. [Google Scholar] [CrossRef] [Green Version]
- Kamada, F.; Aoki, Y.; Narisawa, A.; Abe, Y.; Komatsuzaki, S.; Kikuchi, A.; Kanno, J.; Niihori, T.; Ono, M.; Ishii, N.; et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J. Hum. Genet. 2011, 56, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Yonekawa, Y.; Ogata, N.; Kaku, Y.; Taub, E.; Imhof, H.G. Moyamoya disease in Europe, past and present status. Clin. Neurol. Neurosurg. 1997, 99 (Suppl. S2), S58–S60. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Fandino, J.; Hug, M.; Wiesli, M.; Fujioka, M.; Khan, N. Moyamoya angiopathy in Europe. In Moyamoya Disease Update, 1st ed.; Cho, B.K., Tominaga, T., Eds.; Springer: Tokyo, Japan, 2010; pp. 361–369. [Google Scholar]
- Jang, M.A.; Chung, J.W.; Yeon, J.Y.; Kim, J.S.; Hong, S.C.; Bang, O.Y.; Ki, C.S. Frequency and significance of rare RNF213 variants in patients with adult moyamoya disease. PLoS ONE 2017, 12, e0179689. [Google Scholar] [CrossRef] [Green Version]
- Moteki, Y.; Onda, H.; Kasuya, H.; Yoneyama, T.; Okada, Y.; Hirota, K.; Mukawa, M.; Nariai, T.; Mitani, S.; Akagawa, H. Systematic Validation of RNF213 Coding Variants in Japanese Patients With Moyamoya Disease. J. Am. Heart Assoc. 2015, 4, e001862. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Senevirathna, S.T.; Hitomi, T.; Kobayashi, H.; Roder, C.; Herzig, R.; Kraemer, M.; Voormolen, M.H.; Cahova, P.; Krischek, B.; et al. Genomewide association study identifies no major founder variant in Caucasian moyamoya disease. J. Genet. 2013, 92, 605–609. [Google Scholar] [CrossRef]
- Hever, P.; Alamri, A.; Tolias, C. Moyamoya angiopathy—Is there a Western phenotype? Br. J. Neurosurg. 2015, 29, 765–771. [Google Scholar] [CrossRef]
Patient No. | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Gender (M/F) | M | F | M | F | M | F | F | M | M | ||
Age (Y) | 25 | 36 | 8 | 13 | 13 | 8 | 52 | 11 | 4 | ||
TSC diagnostic status | Possible | Definite | Definite | Possible | Possible | Possible | Definite | Possible | Definite | ||
Genetics | Affected gene | TSC1 | TSC1 | TSC2 | PKHD1 | SLC12A5 | RNF213 | NA | NA | NA | |
c.DNA change | c.232G > T | c.1498C > T | c.226-6T > G | c.3747T > G | c.5513A > G | c.1417G > A | c.2875G > T | ||||
Protein change | p.Glu78X | p.Arg500X | N/A | p.Cys1249Trp | p.Tyr1838Cys | p.Val473Ile | p.Gly959X | ||||
Variant type | Nonsense | Nonsense | Splicing | Missense | Missense | Missense | Nonsense | ||||
Zygosity | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | Heterozygous | ||||
Classification | Likely pathogenic (2) | Pathogenic (1) | VUS (3) | Pathogenic (1) | Pathogenic (1) | VUS (3) | Likely pathogenic (2) | ||||
Diagnosis after WES | TSC type 1 | TSC type 1 | TSC type 2 | Polycystic kidney disease type 4 with or without hepatic disease | Idiopathic generalized epilepsy type 14 | Moyamoya disease type 2 | |||||
Inheritance | AD | AD | AD | AR | AD | AD | |||||
Skin | Hypomelanotic macule | − | − | − | − | + | + | − | + | − | |
Adenoma sebaceum | − | + | − | − | − | − | + | − | − | ||
Ungual fibroma | − | + | − | − | − | − | + | − | − | ||
Shagreen patch | − | − | − | − | − | − | − | − | − | ||
Central nervous system | SEN | − | − | − | − | − | − | − | − | + | |
SEGA | − | − | − | − | − | − | − | − | − | ||
Cortical tuber | + | − | + | + | − | − | − | − | + | ||
Epilepsy | + | − | + | + | + | + | − | − | − | ||
Other | − | − | − | − | White matter lesions | Cortical lesions | − | Slow psychomotor development, Vermis hypoplasia, Polymicrogyria | Corpus pineale cyst | ||
Kidney | Renal cyst | − | − | − | + | − | − | − | − | − | |
Renal tumor | − | + | − | − | − | − | − | − | − | ||
Angiomyolipoma | − | − | − | − | − | − | + | − | − | ||
Heart | Ventricular septal defect | − | − | − | − | − | + | − | − | − | |
Rhabdomyoma | − | − | + | − | − | − | − | − | − | ||
Other symptoms | − | − | − | − | − | − | Lymphangioleiomyomatosis | Right hallux onychodystrophy | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovesdi, E.; Ripszam, R.; Postyeni, E.; Horvath, E.B.; Kelemen, A.; Fabos, B.; Farkas, V.; Hadzsiev, K.; Sumegi, K.; Magyari, L.; et al. Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing. Genes 2021, 12, 1401. https://doi.org/10.3390/genes12091401
Kovesdi E, Ripszam R, Postyeni E, Horvath EB, Kelemen A, Fabos B, Farkas V, Hadzsiev K, Sumegi K, Magyari L, et al. Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing. Genes. 2021; 12(9):1401. https://doi.org/10.3390/genes12091401
Chicago/Turabian StyleKovesdi, Erzsebet, Reka Ripszam, Etelka Postyeni, Emese Beatrix Horvath, Anna Kelemen, Beata Fabos, Viktor Farkas, Kinga Hadzsiev, Katalin Sumegi, Lili Magyari, and et al. 2021. "Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing" Genes 12, no. 9: 1401. https://doi.org/10.3390/genes12091401
APA StyleKovesdi, E., Ripszam, R., Postyeni, E., Horvath, E. B., Kelemen, A., Fabos, B., Farkas, V., Hadzsiev, K., Sumegi, K., Magyari, L., Moreno, P. G., Bauer, P., & Melegh, B. (2021). Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing. Genes, 12(9), 1401. https://doi.org/10.3390/genes12091401