Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Growth Conditions
2.2. Bioinformatics Analysis
2.3. Gene Expression Analysis
3. Results
3.1. Genome-Wide Identification and Characterization of BjuPYLs in B. juncea var. tumida
3.2. The Phylogenic Analysis and Gene Structures of BjuPYLs
3.3. The Alignment of PYL Proteins and Motif Analysis
3.4. The Promoter cis-Acting Regulatory Elements Prediction of BjuPYLs
3.5. The Tissue-Specific Expression Pattern Analysis of BjuPYLs
3.6. The Gene Expression Levels of BjuPYLs in B. juncea var. tumida Under Abiotic Stress
3.7. The Gene Expression Levels of BjuPYLs in B. juncea var. tumida under Pathogen Treatment
3.8. The Expression Patterns of BjuPYLs in B. juncea var. tumida During Stem Swelling Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Finkelstein, R.R.; Gampala, S.S.; Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell 2002, 14, S15–S45. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M.; Hanhart, C.J.; Hilhorst, H.W.; Karssen, C.M. In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol. 1989, 90, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA perception and signalling. Trends Plant Sci. 2010, 15, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Ton, J.; Flors, V.; Mauch-Mani, B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Kim, T.H.; Bohmer, M.; Hu, H.; Nishimura, N.; Schroeder, J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010, 61, 561–591. [Google Scholar] [CrossRef]
- Kong, L.; Cheng, J.; Zhu, Y.; Ding, Y.; Meng, J.; Chen, Z.; Xie, Q.; Guo, Y.; Li, J.; Yang, S.; et al. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat. Commun. 2015, 6, 8630. [Google Scholar] [CrossRef]
- Fujii, H.; Chinnusamy, V.; Rodrigues, A.; Rubio, S.; Antoni, R.; Park, S.Y.; Cutler, S.R.; Sheen, J.; Rodriguez, P.L.; Zhu, J.K. In vitro reconstitution of an abscisic acid signalling pathway. Nature 2009, 462, 660–664. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324, 1064–1068. [Google Scholar] [CrossRef]
- Park, S.Y.; Fung, P.; Nishimura, N.; Jensen, D.R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T.F.; et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009, 324, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Guzman, M.; Pizzio, G.A.; Antoni, R.; Vera-Sirera, F.; Merilo, E.; Bassel, G.W.; Fernandez, M.A.; Holdsworth, M.J.; Perez-Amador, M.A.; Kollist, H.; et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 2012, 24, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
- Lackman, P.; Gonzalez-Guzman, M.; Tilleman, S.; Carqueijeiro, I.; Pérez, A.C.; Moses, T.; Seo, M.; Kanno, Y.; Häkkinen, S.T.; Van-Montagu, M.C.; et al. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. USA 2011, 108, 5891–5896. [Google Scholar] [CrossRef] [PubMed]
- Bueso, E.; Rodriguez, L.; Lorenzo-Orts, L.; Gonzalez-Guzman, M.; Sayas, E.; Muñoz-Bertomeu, J.; Ibañez, C.; Serrano, R.; Rodriguez, P.L. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J. 2015, 80, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, K.; Hwang, H.; Bhatnagar, N.; Kim, D.Y.; Yoon, I.S.; Byun, M.O.; Kim, S.T.; Jung, K.H.; Kim, B.G. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J. Exp. Bot. 2014, 65, 453–464. [Google Scholar] [CrossRef]
- Di, F.; Jian, H.; Wang, T.; Chen, X.; Ding, Y.; Du, H.; Lu, K.; Li, J.; Liu, L. Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, D.; Wang, X.; Ji, C.; Cheng, F.; Liu, B.; Hu, Z.; Chen, S.; Pental, D.; Ju, Y.; et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016, 48, 1225–1232. [Google Scholar] [CrossRef]
- Shi, H.; Wang, L.L.; Sun, L.T.; Dong, L.L.; Liu, B.; Chen, L.P. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee). Plant Biol. 2012, 14, 956–963. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [Green Version]
- Melcher, K.; Ng, L.M.; Zhou, X.E.; Soon, F.F.; Xu, Y.; Suino-Powell, K.M.; Park, S.Y.; Weiner, J.J.; Fujii, H.; Chinnusamy, V.; et al. A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 2009, 462, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Fujita, Y.; Katsura, K.; Maruyama, K.; Narusaka, Y.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol. 2006, 60, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Nag, R.; Maity, M.K.; Dasgupta, M. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin. Plant Mol. Biol. 2005, 59, 821–838. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Hagen, G.; Guilfoyle, T. Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci. 1997, 126, 193–201. [Google Scholar] [CrossRef]
- Redman, J.; Whitcraft, J.; Johnson, C.; Arias, J. Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Rep. 2002, 21, 180–185. [Google Scholar]
- Iwasaki, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Identification of a cis -regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet. 1995, 247, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Yamaguchi-Shinozaki, K.; Urao, T.; Iwasaki, T.; Hosokawa, D.; Shinozaki, K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 1997, 9, 1859–1868. [Google Scholar]
- Xue, G.P. Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res. 2002, 30, e77. [Google Scholar] [CrossRef]
- Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeon, J.M.; Yoo, J.H.; Kim, M.C.; Park, C.Y.; Jeong, J.C.; Moon, B.C.; Lee, J.H.; et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004, 135, 2150–2161. [Google Scholar] [CrossRef]
- Brown, R.L.; Kazan, K.; McGrath, K.C.; Maclean, D.J.; Manners, J.M. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 2003, 132, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 2003, 15, 3033–3050. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 2003, 33, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.S.; Wilhelm, K.S.; Thomashow, M.F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 1994, 24, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wang, Z.; Ren, Z.; Zhi, L.; Yao, B.; Su, C.; Liu, L.; Li, X. SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet. 2017, 13, e1006947. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Piao, Y.; Liu, Y.; Li, X.; Piao, Z. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci. 2018, 270, 257–267. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Z.; Li, X.; Lv, T.; Liu, H.; Wang, L.; Niu, H.; Bu, Q. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice 2015, 8, 28. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, T.; Miao, W.; Sun, L.; Tian, M.; Wang, J.; Hao, F. Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium. PeerJ 2017, 5, e4126. [Google Scholar] [CrossRef]
Group | Gene Name | Locus | Sequence ID | Exon | Start (bp) | End (bp) | Genomics (bp) | CDS (bp) | Protein (aa) | pl | MW (kD) |
---|---|---|---|---|---|---|---|---|---|---|---|
AtPYL3 | BjuPYL3 | B05 | BjuB025977 | 1 | 59063131 | 59062526 | 606 | 606 | 202 | 9.12 | 22.52 |
AtPYL4 | BjuPYL4-1 | B06 | BjuB020198 | 1 | 4327438 | 4326815 | 624 | 624 | 208 | 7.08 | 22.48 |
BjuPYL4-2 | B08 | BjuB016454 | 1 | 21070827 | 21071450 | 624 | 624 | 208 | 6.43 | 22.49 | |
BjuPYL4-3 | A04 | BjuA000105 | 1 | 22667580 | 22668194 | 615 | 615 | 205 | 6.22 | 21.99 | |
BjuPYL4-4 | B01 | BjuB026911 | 1 | 5965187 | 5964576 | 612 | 612 | 204 | 6.22 | 21.98 | |
AtPYL5 | BjuPYL5-1 | A10 | BjuA039937 | 1 | 18355046 | 18354435 | 612 | 612 | 204 | 6.08 | 22.75 |
BjuPYL5-2 | B02 | BjuB048564 | 1 | 51651202 | 51650591 | 612 | 612 | 204 | 5.82 | 22.72 | |
BjuPYL5-3 | A03 | BjuA009007 | 1 | 1129007 | 1129615 | 609 | 609 | 203 | 5.80 | 22.71 | |
BjuPYL5-4 | B05 | BjuB040841 | 1 | 1261985 | 1262593 | 609 | 609 | 203 | 6.13 | 22.64 | |
BjuPYL5-5 | A02 | BjuA040927 | 1 | 1002880 | 1003470 | 591 | 591 | 197 | 6.03 | 22.04 | |
AtPYL6 | BjuPYL6-1 | A03 | BjuA010539 | 1 | 12296114 | 12295479 | 636 | 636 | 212 | 6.56 | 23.49 |
BjuPYL6-2 | B01 | BjuB042092 | 1 | 4270506 | 4271120 | 615 | 615 | 205 | 6.09 | 22.76 | |
BjuPYL6-3 | B01 | BjuB042125 | 2 | 4517378 | 4518303 | 926 | 663 | 221 | 6.70 | 24.25 | |
AtPYL7 | BjuPYL7-1 | B08 | BjuB046026 | 3 | 23036589 | 23035860 | 730 | 570 | 190 | 7.12 | 21.46 |
BjuPYL7-2 | A03 | BjuA011393 | 3 | 17694212 | 17694945 | 734 | 582 | 194 | 6.30 | 21.73 | |
BjuPYL7-3 | B08 | BjuB017238 | 3 | 41743391 | 41744197 | 807 | 582 | 193 | 6.13 | 21.73 | |
AtPYL8 | BjuPYL8-1 | Contig | BjuO010274 | 3 | 98737 | 99690 | 954 | 552 | 184 | 6.07 | 20.89 |
BjuPYL8-2 | B08 | BjuB041138 | 3 | 15536917 | 15535680 | 1238 | 558 | 186 | 6.30 | 20.89 | |
BjuPYL8-3 | A02 | BjuA006960 | 3 | 8573368 | 8572564 | 805 | 567 | 189 | 6.24 | 21.29 | |
BjuPYL8-4 | A10 | BjuA015299 | 3 | 7690566 | 7691613 | 1048 | 555 | 185 | 6.07 | 21.03 | |
AtPYL10 | BjuPYL10-1 | A01 | BjuA004705 | 3 | 11241174 | 11241943 | 770 | 552 | 184 | 5.61 | 20.65 |
BjuPYL10-2 | B05 | BjuB040453 | 3 | 6546487 | 6545721 | 767 | 552 | 184 | 6.25 | 21.06 | |
AtPYL11 | BjuPYL11-1 | B02 | BjuB036696 | 1 | 54967275 | 54966790 | 486 | 486 | 162 | 5.41 | 18.05 |
BjuPYL11-2 | A06 | BjuA024968 | 1 | 29659710 | 29660219 | 510 | 510 | 170 | 5.21 | 18.75 | |
AtPYL13 | BjuPYL13 | A01 | BjuA003983 | 1 | 5691022 | 5691519 | 498 | 498 | 166 | 5.01 | 18.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Zhong, Y.; Cai, Z.; Su, R.; Li, C. Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida. Genes 2019, 10, 470. https://doi.org/10.3390/genes10060470
Cheng C, Zhong Y, Cai Z, Su R, Li C. Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida. Genes. 2019; 10(6):470. https://doi.org/10.3390/genes10060470
Chicago/Turabian StyleCheng, Chunhong, Yuanmei Zhong, Zhaoming Cai, Rongbin Su, and Changman Li. 2019. "Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida" Genes 10, no. 6: 470. https://doi.org/10.3390/genes10060470
APA StyleCheng, C., Zhong, Y., Cai, Z., Su, R., & Li, C. (2019). Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida. Genes, 10(6), 470. https://doi.org/10.3390/genes10060470