Next Article in Journal
ER-Mitochondria Communication in Cells of the Innate Immune System
Next Article in Special Issue
Modulation of the Lipid Profile of Reconstructed Skin Substitutes after Essential Fatty Acid Supplementation Affects Testosterone Permeability
Previous Article in Journal
The Anti-Apoptotic Effect of ASC-Exosomes in an In Vitro ALS Model and Their Proteomic Analysis
Previous Article in Special Issue
The Differences in the Proteome Profile of Cannabidiol-Treated Skin Fibroblasts following UVA or UVB Irradiation in 2D and 3D Cell Cultures
Open AccessArticle

Fisetin, a 3,7,3′,4′-Tetrahydroxyflavone Inhibits the PI3K/Akt/mTOR and MAPK Pathways and Ameliorates Psoriasis Pathology in 2D and 3D Organotypic Human Inflammatory Skin Models

1
School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
2
Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, Madison, WI 53706, USA
3
Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
4
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
5
Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
6
Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
*
Author to whom correspondence should be addressed.
Current address: School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA.
Cells 2019, 8(9), 1089; https://doi.org/10.3390/cells8091089
Received: 31 July 2019 / Revised: 7 September 2019 / Accepted: 11 September 2019 / Published: 15 September 2019
Psoriasis is a chronic immune-mediated skin disease that involves the interaction of immune and skin cells, and is characterized by cytokine-driven epidermal hyperplasia, deviant differentiation, inflammation, and angiogenesis. Because the available treatments for psoriasis have significant limitations, dietary products are potential natural sources of therapeutic molecules, which can repair the molecular defects associated with psoriasis and could possibly be developed for its management. Fisetin (3,7,3′,4′-tetrahydroxyflavone), a phytochemical naturally found in pigmented fruits and vegetables, has demonstrated proapoptotic and antioxidant effects in several malignancies. This study utilized biochemical, cellular, pharmacological, and tissue engineering tools to characterize the effects of fisetin on normal human epidermal keratinocytes (NHEKs), peripheral blood mononuclear cells (PBMC), and CD4+ T lymphocytes in 2D and 3D psoriasis-like disease models. Fisetin treatment of NHEKs dose- and time-dependently induced differentiation and inhibited interleukin-22-induced proliferation, as well as activation of the PI3K/Akt/mTOR pathway. Fisetin treatment of TNF-α stimulated NHEKs also significantly inhibited the activation of p38 and JNK, but had enhanced effect on ERK1/2 (MAPK). In addition, fisetin treatment significantly decreased the secretion of Th1/Th-17 pro-inflammatory cytokines, particularly IFN-γ and IL-17A by 12-O-tetradecanolylphorbol 13-acetate (TPA)-stimulated NHEKs and anti-CD3/CD28-activated human PBMCs. Furthermore, we established the in vivo relevance of fisetin functions, using a 3D full-thickness human skin model of psoriasis (FTRHSP) that closely mimics in vivo human psoriatic skin lesions. Herein, fisetin significantly ameliorated psoriasis-like disease features, and decreased the production of IL-17 by CD4+ T lymphocytes co-cultured with FTRHSP. Collectively, our data identify the prodifferentiative, antiproliferative, and anti-inflammatory effects of fisetin, via modulation of the PI3K-Akt-mTOR and p38/JNK pathways and the production of cytokines in 2D and 3D human skin models of psoriasis. These results suggest that fisetin has a great potential to be developed as an effective and inexpensive agent for the treatment of psoriasis and other related inflammatory skin disorders. View Full-Text
Keywords: fisetin; psoriasis; normal human epidermal keratinocyte; cell signaling; cell differentiation; proliferation; inflammatory cytokine; PBMC; CD4+ T lymphocyte; 3D psoriasis-like skin disease model fisetin; psoriasis; normal human epidermal keratinocyte; cell signaling; cell differentiation; proliferation; inflammatory cytokine; PBMC; CD4+ T lymphocyte; 3D psoriasis-like skin disease model
Show Figures

Graphical abstract

MDPI and ACS Style

Chamcheu, J.C.; Esnault, S.; Adhami, V.M.; Noll, A.L.; Banang-Mbeumi, S.; Roy, T.; Singh, S.S.; Huang, S.; Kousoulas, K.G.; Mukhtar, H. Fisetin, a 3,7,3′,4′-Tetrahydroxyflavone Inhibits the PI3K/Akt/mTOR and MAPK Pathways and Ameliorates Psoriasis Pathology in 2D and 3D Organotypic Human Inflammatory Skin Models. Cells 2019, 8, 1089.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop