A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Postmortem MRI Acquisition
2.3. Postmortem MRI Processing
2.4. MRI Quantifications
2.5. Histology
2.6. Statistical Analysis
3. Results
3.1. T2-Hyperintensities
3.2. Intracranial Hemorrhage and Microbleeds
3.3. Anatomic Volume and R2* Transverse Relaxation Rate
3.4. Principal Component Analysis (PCA)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shortt, J.A.; Ruggiero, R.P.; Cox, C.; Wacholder, A.C.; Pollock, D.D. Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob. DNA 2020, 11, 11. [Google Scholar] [CrossRef]
- Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 2021, 9, 98. [Google Scholar]
- Malik, I.; Kelley, C.P.; Wang, E.T.; Todd, P.K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 2021, 22, 589–607. [Google Scholar] [CrossRef]
- Hagerman, P.J.; Hagerman, R.J. The Fragile-X Premutation: A Maturing Perspective. Am. J. Hum. Genet. 2004, 74, 805–816. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Leehey, M.; Heinrichs, W.; Tassone, F.; Wilson, R.; Hills, J.; Grigsby, J.; Gage, B.; Hagerman, P.J. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001, 57, 127–130. [Google Scholar] [CrossRef]
- Jacquemont, S.; Hagerman, R.J.; Leehey, M.A.; Hall, D.A.; Levine, R.A.; Brunberg, J.A.; Zhang, L.; Jardini, T.; Gane, L.W.; Harris, S.W.; et al. Penetrance of the Fragile X—Associated Tremor / Ataxia Syndrome in a Premutation Carrier Population. JAMA 2004, 291, 460–469. [Google Scholar] [CrossRef]
- Rodriguez-Revenga, L.; Madrigal, I.; Pagonabarraga, J.; Xunclà, M.; Badenas, C.; Kulisevsky, J.; Gomez, B.; Milà, M. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur. J. Hum. Genet. 2009, 17, 1359–1362. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Hagerman, P. Fragile X-associated tremor/ataxia syndrome—Features, mechanisms and management. Nat. Rev. Neurol. 2016, 12, 403–412. [Google Scholar]
- Brunberg, J.A.; Jacquemont, S.; Hagerman, R.J.; Berry-Kravis, E.M.; Grigsby, J.; Leehey, M.A.; Tassone, F.; Brown, W.T.; Greco, C.M.; Hagerman, P.J. Fragile X Premutation Carriers: Characteristic MR Imaging Findings of Adult Male Patients with Progressive Cerebellar and Cognitive Dysfunction. Am. J. Neuroradiol. 2002, 23, 1757–1766. [Google Scholar]
- Apartis, E.; Blancher, A.; Meissner, W.G.; Guyant-Maréchal, L.; Maltête, D.; De Broucker, T.; Legrand, A.-P.; Bouzenada, H.; Thanh, H.T.; Sallansonnet-Froment, M.; et al. FXTAS: New insights and the need for revised diagnostic criteria. Neurology 2012, 79, 1898–1907. [Google Scholar] [CrossRef]
- Hall, D.A.; Birch, R.C.; Anheim, M.; Jønch, A.E.; Pintado, E.; O’Keefe, J.; Trollor, J.; Stebbins, G.; Hagerman, R.; Fahn, S.; et al. Emerging topics in FXTAS. J. Neurodev. Disord. 2014, 6, 31. [Google Scholar]
- Wang, J.Y.; Grigsby, J.; Placido, D.; Wei, H.; Tassone, F.; Kim, K.; Hessl, D.; Rivera, S.M.; Hagerman, R.J. Clinical and Molecular Correlates of Abnormal Changes in the Cerebellum and Globus Pallidus in Fragile X Premutation. Front. Neurol. 2022, 13, 797649. [Google Scholar] [CrossRef]
- Longstreth, W.; Manolio, T.A.; Arnold, A.; Burke, G.L.; Bryan, N.; Jungreis, C.A.; Enright, P.L.; O’Leary, D.; Fried, L. Clinical Correlates of White Matter Findings on Cranial Magnetic Resonance Imaging of 3301 Elderly People. The Cardiovascular Health Study. Stroke 1996, 27, 1274–1282. [Google Scholar] [CrossRef]
- de Leeuw, F.-E.; de Groot, J.C.; Achten, E.; Oudkerk, M.; Ramos, L.M.P.; Heijboer, R.; Hofman, A.; Jolles, J.; van Gijn, J.; Breteler, M.M.B. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 2001, 70, 9–14. [Google Scholar] [CrossRef]
- Joutel, A.; Chabriat, H. Pathogenesis of white matter changes in cerebral small vessel diseases: Beyond vessel-intrinsic mechanisms. Clin. Sci. 2017, 131, 635–651. [Google Scholar] [CrossRef]
- Jorgensen, D.; Shaaban, C.E.; Wiley, C.A.; Gianaros, P.J.; Mettenburg, J.; Rosano, C. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: An invited review. Am. J. Physiol. Circ. Physiol. 2018, 314, H1117–H1136. [Google Scholar] [CrossRef]
- Greco, C.M.; Berman, R.F.; Martin, R.M.; Tassone, F.; Schwartz, P.H.; Chang, A.; Trapp, B.D.; Iwahashi, C.; Brunberg, J.; Grigsby, J.; et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2005, 129, 243–255. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Salcedo-Arellano, M.J.; Wang, J.Y.; McLennan, Y.A.; Doan, M.; Cabal-Herrera, A.M.; Jimenez, S.; Wolf-Ochoa, M.W.; Sanchez, D.; Juarez, P.; Tassone, F.; et al. Cerebral Microbleeds in Fragile X–Associated Tremor/Ataxia Syndrome. Mov. Disord. 2021, 36, 1935–1943. [Google Scholar] [CrossRef]
- Greco, C.M.; Hagerman, R.J.; Tassone, F.; Chudley, A.E.; Del Bigio, M.R.; Jacquemont, S.; Leehey, M.; Hagerman, P.J. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002, 125, 1760–1771. [Google Scholar] [CrossRef]
- Tassone, F.; Hagerman, R.J.; Garcia-Arocena, D.; Khandjian, E.W.; Greco, C.M.; Hagerman, P.J. Intranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome. J. Med. Genet. 2004, 41, e43. [Google Scholar] [CrossRef]
- Ariza, J.; Rogers, H.; Monterrubio, A.; Reyes-Miranda, A.; Hagerman, P.J.; Martínez-Cerdeño, V. A Majority of FXTAS Cases Present with Intranuclear Inclusions Within Purkinje Cells. Cerebellum 2016, 15, 546–551. [Google Scholar] [CrossRef]
- Robinson, A.C.; Bajaj, N.; Hadjivassiliou, M.; Minshull, J.; Mahmood, A.; Roncaroli, F. Neuropathology of a case of fragile X -associated tremor ataxia syndrome without tremor. Neuropathology 2020, 40, 611–619. [Google Scholar] [CrossRef]
- Tassone, F.; Hagerman, R.J.; Taylor, A.K.; Gane, L.W.; Godfrey, T.E.; Hagerman, P.J. Elevated Levels of FMR1 mRNA in Carrier Males: A New Mechanism of Involvement in the Fragile-X Syndrome. Am. J. Hum. Genet. 2000, 66, 6–15. [Google Scholar] [CrossRef]
- Ariza, J.; Steward, C.; Rueckert, F.; Widdison, M.; Coffman, R.; Afjei, A.; Noctor, S.C.; Hagerman, R.; Hagerman, P.; Martínez-Cerdeño, V. Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res. 2014, 1598, 88–96. [Google Scholar] [CrossRef]
- Ariza, J.; Rogers, H.; Hartvigsen, A.; Snell, M.; Dill, M.; Judd, D.; Hagerman, P.; Martínez-Cerdeño, V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov. Disord. 2017, 32, 585–591. [Google Scholar] [CrossRef]
- Ross-Inta, C.; Omanska-Klusek, A.; Wong, S.; Barrow, C.; Garcia-Arocena, D.; Iwahashi, C.; Berry-Kravis, E.; Hagerman, R.J.; Hagerman, P.J.; Giulivi, C. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J. 2010, 429, 545–552. [Google Scholar] [CrossRef]
- Giulivi, C.; Napoli, E.; Tassone, F.; Halmai, J.; Hagerman, R. Plasma metabolic profile delineates roles for neurodegeneration, pro-inflammatory damage and mitochondrial dysfunction in the FMR1 premutation. Biochem. J. 2016, 473, 3871–3888. [Google Scholar]
- Mollink, J.; Kleinnijenhuis, M.; Walsum, A.-M.v.C.v.; Sotiropoulos, S.N.; Cottaar, M.; Mirfin, C.; Heinrich, M.P.; Jenkinson, M.; Pallebage-Gamarallage, M.; Ansorge, O.; et al. Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 2017, 157, 561–574. [Google Scholar] [CrossRef]
- Schumann, C.M.; Buonocore, M.H.; Amaral, D.G. Magnetic resonance imaging of the post-mortem autistic brain. J. Autism Dev. Disord. 2001, 31, 561–568. [Google Scholar] [CrossRef]
- Miller, K.L.; Stagg, C.J.; Douaud, G.; Jbabdi, S.; Smith, S.M.; Behrens, T.E.; Jenkinson, M.; Chance, S.A.; Esiri, M.M.; Voets, N.L.; et al. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 2011, 57, 167–181. [Google Scholar] [CrossRef]
- Jiang, H.; van Zijl, P.C.; Kim, J.; Pearlson, G.D.; Mori, S. DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 2006, 81, 106–116. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Nolte, J. The Human Brain: An Introduction to Its Functional Anatomy, 5th ed.; Mosby: St. Louis, MO, USA, 2002. [Google Scholar]
- Mai, J.K.M.M.; Paxinos, G. Atlas of the Human Brain; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Péran, P.; Hagberg, G.; Luccichenti, G.; Cherubini, A.; Brainovich, V.; Celsis, P.; Caltagirone, C.; Sabatini, U. Voxel-based analysis of R2* maps in the healthy human brain. J. Magn. Reson. Imaging 2007, 26, 1413–1420. [Google Scholar] [CrossRef]
- Salcedo-Arellano, M.J.; Sanchez, D.; Wang, J.Y.; McLennan, Y.A.; Clark, C.J.; Juarez, P.; Schneider, A.; Tassone, F.; Hagerman, R.J.; Martínez-Cerdeño, V. Case Report: Coexistence of Alzheimer-Type Neuropathology in Fragile X-Associated Tremor Ataxia Syndrome. Front. Neurosci. 2021, 15, 720253. [Google Scholar] [CrossRef]
- Gregoire, S.M.; Chaudhary, U.J.; Brown, M.M.; Yousry, T.A.; Kallis, C.; Jager, H.R.; Werring, D.J. The Microbleed Anatomical Rating Scale (MARS): Reliability of a tool to map brain microbleeds. Neurology 2009, 73, 1759–1766. [Google Scholar] [CrossRef]
- Charidimou, A.; Frosch, M.P.; Salman, R.A.-S.; Baron, J.-C.; Cordonnier, C.; Hernandez-Guillamon, M.; Linn, J.; Raposo, N.; Rodrigues, M.; Romero, J.R.; et al. Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. Int. J. Stroke 2019, 14, 956–971. [Google Scholar] [CrossRef]
- Adam, G.; Ferrier, M.; Patsoura, S.; Gramada, R.; Meluchova, Z.; Cazzola, V.; Darcourt, J.; Cognard, C.; Viguier, A.; Bonneville, F. Magnetic resonance imaging of arterial stroke mimics: A pictorial review. Insights Into Imaging 2018, 9, 815–831. [Google Scholar] [CrossRef]
- Charidimou, A.; Schmitt, A.; Wilson, D.; Yakushiji, Y.; Gregoire, S.M.; Fox, Z.; Jäger, H.R.; Werring, D.J. The Cerebral Haemorrhage Anatomical RaTing inStrument (CHARTS): Development and assessment of reliability. J. Neurol. Sci. 2016, 372, 178–183. [Google Scholar] [CrossRef]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Connor, J.R.; Menzies, S.L. Relationship of iron to oligodendrocytes and myelination. Glia 1996, 17, 83–93. [Google Scholar]
- Nonaka, H.; Akima, M.; Hatori, T.; Nagayama, T.; Zhang, Z.; Ihara, F. The microvasculature of the cerebral white matter: Arteries of the subcortical white matter. J. Neuropathol. Exp. Neurol. 2003, 62, 154–161. [Google Scholar] [CrossRef]
- Dijkstra, A.A.; Haify, S.N.; Verwey, N.A.; Prins, N.D.; van der Toorn, E.C.; Rozemuller, A.J.; Bugiani, M.; den Dunnen, W.; Todd, P.; Charlet-Berguerand, N.; et al. Neuropathology of FMR1-premutation carriers presenting with dementia and neuropsychiatric symptoms. Brain Commun. 2021, 3, fcab007. [Google Scholar]
- Hagerman, R.J.; Protic, D.; Rajaratnam, A.; Salcedo, M.; Aydin, E.Y.; Schneider, A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front. Psychiatry 2018, 9, 564. [Google Scholar] [CrossRef]
- Todd, P.K.; Oh, S.Y.; Krans, A.; He, F.; Sellier, C.; Frazer, M.; Renoux, A.J.; Chen, K.-C.; Scaglione, K.M.; Basrur, V.; et al. CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron 2013, 78, 440–455. [Google Scholar] [CrossRef]
- Cohen, S.; Masyn, K.; Adams, J.; Hessl, D.; Rivera, S.; Tassone, F.; Brunberg, J.; DeCarli, C.; Zhang, L.; Cogswell, J.; et al. Molecular and imaging correlates of the fragile X-associated tremor/ataxia syndrome. Neurology 2006, 67, 1426–1431. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hessl, D.; Hagerman, R.J.; Simon, T.J.; Tassone, F.; Ferrer, E.; Rivera, S.M. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol. Aging 2017, 55, 11–19. [Google Scholar] [CrossRef]
- Guillain, G. The Syndrome of Synchronous and Rhythmic Palato-Pharyngo-Laryngo-Oculo-Diaphragmatic Myoclonus: (Section of Neurology). Proc. R. Soc. Med. 1938, 31, 1031–1038. [Google Scholar]
- Bond, K.; Brinjikji, W.; Eckel, L.; Kallmes, D.; McDonald, R.; Carr, C. Dentate Update: Imaging Features of Entities That Affect the Dentate Nucleus. Am. J. Neuroradiol. 2017, 38, 1467–1474. [Google Scholar] [CrossRef]
- Lang, E.J.; Apps, R.; Bengtsson, F.; Cerminara, N.L.; De Zeeuw, C.I.; Ebner, T.J.; Heck, D.H.; Jaeger, D.; Jörntell, H.; Kawato, M.; et al. The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. Cerebellum 2016, 16, 230–252. [Google Scholar] [CrossRef]
- Kor, D.; Birkl, C.; Ropele, S.; Doucette, J.; Xu, T.; Wiggermann, V.; Hernández-Torres, E.; Hametner, S.; Rauscher, A. The role of iron and myelin in orientation dependent R2* of white matter. NMR Biomed. 2019, 32, e4092. [Google Scholar]
ID | Age | Sex | PMI (Hour) | Brain Type | CGG | Cause of Death | Mid-Brain * | Pons * | CB * |
---|---|---|---|---|---|---|---|---|---|
P1M | 68 | M | 84 | WB | 119 | FXTAS-related complications | 1 | 1 | 1 |
P2F | 93 | F | NA | LH | 60, 30 | FXTAS-related complications | 1 | 1 | 1 |
P3F | 89 | F | 48 | RH | 71, 30 | FXTAS-related complications | 1 | 1 | 1 |
P4M | 75 | M | 6–8 | LH | 67 | FXTAS-related complications | 1 | 1 | 1 |
P5M | 71 | M | 12 | RH | 120 | FXTAS-related complications | 1 | 1 | 1 |
P6M | 67 | M | NA | WB | NA | FXTAS-related complications | 1 | 1 | 1 |
P7M | 69 | M | 18 | RH | 118 | FXTAS-related complications | 1 | 0 | 1 |
P8M | 77 | M | 5.3 | RH | 95 | FXTAS-related complications | 1 | 1 | 1 |
P9M | 66 | M | NA | RH | 93 | FXTAS-related complications | 0 | 0 | 1 |
P10M | 82 | M | 29 | RH | 70 | FXTAS-related complications | 0 | 0 | 1 |
P11M | 85 | M | NA | RH | 66 | FXTAS-related complications | 0 | 0 | 1 |
P12M | 72 | M | 3 | LH | 60 | FXTAS-related complications | 1 | 1 | 1 |
P13M | 74 | M | NA | WB | NA | FXTAS-related complications | 1 | 1 | 1 |
P14F | 79 | F | NA | LH | 78, 30 | FXTAS-related complications | 0 | 0 | 1 |
P15M | 71 | M | NA | WB | 76 | FXTAS-related complications | 1 | 1 | 1 |
P16M | 70 | M | 21 | WB | NA | FXTAS-related complications | 1 | 1 | 1 |
P17M | 71 | M | 19 | RH | 85 | FXTAS-related complications | 0 | 0 | 0 |
C1M | 65 | M | 42.2 | LH | NA | Leukemia/respiratory failure | 1 | 1 | 1 |
C2M | 74 | M | 136.1 | LH | NA | Cardiovascular disease | 1 | 1 | 1 |
C3M | 62 | M | 36.8 | LH | NA | Cardiopulmonary arrest | 1 | 1 | 1 |
C4M | 77 | M | 78.0 | LH | NA | Cancer | 1 | 1 | 1 |
C5F | 60 | F | 113.5 | LH | NA | Cirrhosis, alcohol use disorder | 1 | 1 | 1 |
C6M | 83 | M | 208 | LH | NA | Cancer | 1 | 0 | 1 |
C7F | 70 | F | 55 | LH | NA | Unknown | 0 | 0 | 1 |
Brain Regions | FXTAS | Control | Group Comparisons | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | β | SE | p Value | FDR | |
Subcortical T2-hyperintensities | ||||||||||
MCP | 17 | 1.88 | 1.41 | 7 | 0.43 | 1.13 | 1.67 | 0.62 | 0.014 | 0.033 |
Globus pallidus | 17 | 1.06 | 1.30 | 7 | 0 | 0 | 1.36 | 0.48 | 0.010 | 0.030 |
Brainstem | 12 | 2.08 | 0.90 | 6 | 1.33 | 0.52 | 0.76 | 0.43 | 0.10 | 0.15 |
CC genu | 17 | 1.94 | 0.90 | 7 | 1.00 | 0.58 | 0.96 | 0.40 | 0.024 | 0.041 |
CC splenium | 17 | 1.94 | 0.90 | 7 | 0.43 | 0.54 | 1.48 | 0.39 | 0.001 | 0.005 |
PV: anterior | 17 | 2.65 | 0.61 | 7 | 1.43 | 0.54 | 1.16 | 0.28 | 0.0004 | 0.005 |
PV: posterior | 17 | 2.18 | 1.02 | 7 | 1.57 | 0.79 | 0.46 | 0.45 | 0.31 | 0.34 |
PV: inferior | 17 | 1.35 | 0.93 | 7 | 1.29 | 0.49 | −0.12 | 0.38 | 0.76 | 0.76 |
DWM: frontal | 17 | 2.41 | 0.94 | 7 | 0.86 | 0.38 | 1.45 | 0.39 | 0.001 | 0.005 |
DWM: parietal | 17 | 2.24 | 0.97 | 7 | 1.14 | 0.38 | 1.05 | 0.41 | 0.018 | 0.035 |
DWM: temporal | 17 | 1.29 | 0.99 | 7 | 0.86 | 0.38 | 0.60 | 0.39 | 0.14 | 0.19 |
DWM: occipital | 17 | 2.00 | 1.00 | 7 | 1.29 | 0.76 | 0.57 | 0.44 | 0.21 | 0.25 |
Microbleeds | ||||||||||
Cerebral cortex | 17 | 1.37 | 0.74 | 7 | 2.11 | 1.01 | −0.78 | 0.39 | 0.06 | - |
DWM | 17 | 2.18 | 1.24 | 7 | 2.29 | 1.89 | −0.34 | 0.67 | 0.62 | - |
Cerebellum | 17 | 3.00 | 0.00 | 7 | 2.67 | 0.58 | 0.27 | 0.16 | 0.10 | - |
Intracranial hemorrhage | ||||||||||
# of regions | 17 | 0.47 | 0.94 | 7 | 0 | 0 | 0.66 | 0.43 | 0.14 | - |
Brain Regions | FXTAS | Control | Group Comparisons | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | β | SE | p Value | FDR | |
Cerebral WM | 17 | 141.8 | 32.4 | 7 | 172.6 | 42.0 | −33.4 | 17.4 | 0.07 | 0.10 |
Cerebral GM | 17 | 261.8 | 30.3 | 7 | 287.2 | 44.2 | −26.5 | 16.6 | 0.13 | 0.17 |
Cerebellar WM | 16 | 6.81 | 1.94 | 7 | 10.05 | 2.59 | −3.46 | 1.09 | 0.005 | 0.026 |
Cerebellar GM | 16 | 42.80 | 7.39 | 7 | 52.93 | 8.14 | −8.55 | 3.73 | 0.034 | 0.10 |
Corpus callosum | 17 | 8.12 | 2.82 | 7 | 9.55 | 2.56 | −1.67 | 1.33 | 0.23 | 0.28 |
Cerebral peduncle | 16 | 0.68 | 0.21 | 7 | 0.90 | 0.20 | −0.20 | 0.10 | 0.07 | 0.10 |
Putamen | 17 | 4.44 | 0.50 | 7 | 4.89 | 0.71 | −0.53 | 0.27 | 0.07 | 0.10 |
Globus pallidus | 17 | 1.42 | 0.28 | 7 | 1.64 | 0.26 | −0.26 | 0.13 | 0.07 | 0.10 |
Caudate N. | 17 | 3.74 | 0.63 | 7 | 3.96 | 0.40 | −0.26 | 0.29 | 0.39 | 0.45 |
Thalamus | 17 | 6.02 | 1.10 | 7 | 7.42 | 1.32 | −1.39 | 0.57 | 0.024 | 0.09 |
Hippocampus | 17 | 3.41 | 0.62 | 7 | 4.14 | 0.87 | −0.61 | 0.31 | 0.07 | 0.10 |
Amygdala | 17 | 1.47 | 0.39 | 7 | 1.68 | 0.42 | −0.10 | 0.18 | 0.59 | 0.62 |
Subthalamic N. | 17 | 0.08 | 0.04 | 7 | 0.07 | 0.02 | 0.008 | 0.017 | 0.62 | 0.62 |
Red N. | 16 | 0.12 | 0.06 | 7 | 0.18 | 0.04 | −0.08 | 0.023 | 0.003 | 0.023 |
Substantia nigra | 16 | 0.47 | 0.14 | 7 | 0.63 | 0.12 | −0.15 | 0.07 | 0.036 | 0.10 |
Dentate N. | 17 | 0.79 | 0.24 | 7 | 1.10 | 0.16 | −0.37 | 0.10 | 0.001 | 0.021 |
Brain Regions | FXTAS | Control | Group Comparisons | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | β | SE | p Value | FDR | |
Putamen | 17 | 36.4 | 8.3 | 7 | 41.5 | 9.3 | −2.92 | 3.82 | 0.45 | 0.68 |
Globus pallidus | 17 | 59.0 | 20.4 | 7 | 55.3 | 8.4 | 9.43 | 7.41 | 0.22 | 0.39 |
Caudate N. | 17 | 30.8 | 7.3 | 7 | 29.0 | 4.2 | 3.57 | 2.89 | 0.23 | 0.39 |
Thalamus | 17 | 31.1 | 4.5 | 7 | 29.6 | 3.8 | 2.98 | 1.75 | 0.10 | 0.31 |
Hippocampus | 17 | 24.9 | 3.7 | 7 | 22.3 | 2.7 | 3.43 | 1.53 | 0.036 | 0.18 |
Amygdala | 17 | 23.2 | 3.8 | 7 | 22.0 | 2.9 | 2.27 | 1.54 | 0.15 | 0.37 |
Subthalamic N. | 17 | 52.8 | 13.0 | 7 | 44.1 | 5.7 | 12.6 | 4.60 | 0.012 | 0.15 |
Red N. | 16 | 53.1 | 8.6 | 7 | 55.8 | 10.4 | 0.24 | 3.84 | 0.95 | 0.95 |
Substantia nigra | 16 | 52.5 | 12.0 | 7 | 47.1 | 6.0 | 9.22 | 4.31 | 0.045 | 0.18 |
Dentate N. | 17 | 41.4 | 7.9 | 7 | 45.0 | 9.9 | −1.51 | 3.74 | 0.69 | 0.83 |
Cerebral WM | 17 | 35.7 | 6.2 | 7 | 35.3 | 3.1 | 1.42 | 2.56 | 0.59 | 0.78 |
Cerebellar WM | 17 | 33.6 | 5.2 | 7 | 33.6 | 2.6 | 0.55 | 2.11 | 0.80 | 0.87 |
R2* Transverse Relaxation Rate | Group Comparisons | T2-Hyperintensity Rating as a Covariate | |||||||
---|---|---|---|---|---|---|---|---|---|
β | SE | p Value | FDR | Region | β | SE | p Value | FDR | |
Cerebral WM | 7.68 | 2.86 | 0.014 | 0.022 | PV anterior | −5.42 | 1.66 | 0.004 | 0.011 |
Cerebral WM | 2.81 | 2.28 | 0.23 | 0.23 | PV posterior | −3.03 | 1.09 | 0.011 | 0.019 |
Cerebral WM | 6.59 | 2.84 | 0.031 | 0.039 | DWM frontal | −3.56 | 1.24 | 0.009 | 0.019 |
Cerebral WM | 5.34 | 2.41 | 0.039 | 0.046 | DWM parietal | −3.75 | 1.13 | 0.003 | 0.011 |
Cerebellar WM | 4.98 | 2.37 | 0.049 | 0.053 | DWM frontal | −3.06 | 1.05 | 0.009 | 0.019 |
Hippocampus | 4.48 | 1.20 | 0.0013 | 0.009 | PV posterior | −2.27 | 0.57 | 0.001 | 0.009 |
Amygdala | 3.24 | 1.28 | 0.020 | 0.028 | PV posterior | −2.10 | 0.61 | 0.003 | 0.011 |
ID | Age | Regions with Confluent T2-Hyperintensities | Regions with Intracranial Hemorrhage | Brain Damage Type |
---|---|---|---|---|
P1M | 68 | GP, aPV, fDW, pDW, oDW | NA | Ischemic |
P2F | 93 | Brainstem, aPV, iPV, pPV, fDW, pDW, oDW | NA | Ischemic |
P3F | 89 | aPV, iPV, pPV, fDW, pDW, oDW | NA | Ischemic |
P4M | 75 | MCP, brainstem, oDW | Occipital and cerebellum | Both |
P5M | 71 | MCP, CCg, aPV, fDW | Temporal, occipital, and cerebellum | Both |
P6M | 67 | MCP, GP, brainstem | NA | Ischemic |
P7M | 69 | aPV, fDW, tDW | Frontal, parietal, and temporal | Both |
P8M | 77 | MCP, brainstem, aPV, pPV, fDW, pDW, oDW | NA | Ischemic |
P9M | 66 | MCP, aPV, pPV, fDW, pDW, tDW | NA | Ischemic |
P10M | 82 | aPV (2) * | NA | Ischemic |
P11M | 85 | MCP, CCg, CCs, aPV, pPV, fDW, pDW | NA | Ischemic |
P12M | 72 | aPV (2) * | NA | Ischemic |
P13M | 74 | MCP, GP, brainstem, CCg, CCs, aPV, pPV, fDW, pDW, oDW | NA | Ischemic |
P14F | 79 | MCP, aPV, fDW | NA | Ischemic |
P15M | 71 | pPV, pDW, oDW | NA | Ischemic |
P16M | 70 | MCP, CCg, CCs, aPV, pPV, fDW, pDW | NA | Ischemic |
P17M | 71 | MCP, GP, CCg, CCs, aPV, iPV, pPV, fDW, pDW, tDW, oDW | Temporal | Both |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.Y.; Sonico, G.J.; Salcedo-Arellano, M.J.; Hagerman, R.J.; Martinez-Cerdeno, V. A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome. Cells 2023, 12, 1898. https://doi.org/10.3390/cells12141898
Wang JY, Sonico GJ, Salcedo-Arellano MJ, Hagerman RJ, Martinez-Cerdeno V. A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome. Cells. 2023; 12(14):1898. https://doi.org/10.3390/cells12141898
Chicago/Turabian StyleWang, Jun Yi, Gerard J. Sonico, Maria Jimena Salcedo-Arellano, Randi J. Hagerman, and Veronica Martinez-Cerdeno. 2023. "A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome" Cells 12, no. 14: 1898. https://doi.org/10.3390/cells12141898
APA StyleWang, J. Y., Sonico, G. J., Salcedo-Arellano, M. J., Hagerman, R. J., & Martinez-Cerdeno, V. (2023). A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome. Cells, 12(14), 1898. https://doi.org/10.3390/cells12141898