Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish
2.2. Animal Treatment
2.3. Toxicological Evaluation
2.4. Locomotor Tracking
2.5. Local Field Potential
2.6. LC-MS/MS Quantification and Estimation of Bioavailability of VPN (as VPA) and PTX in Larvae
2.6.1. Sample Extraction
2.6.2. LC-ESI-MS/MS Measurements
2.7. Amino Acids and Neurotransmitters Quantification
2.7.1. Sample Preparation and Extraction
2.7.2. LC-MS/MS Conditions
2.8. Statistical Analysis
3. Results and Discussion
3.1. Determination of Anticonvulsant Activity of VPN and PTX in the PTZ Epilepsy-like Zebrafish Model
3.2. Measurment of Compound Concentration in Larvae Using LC-MS/MS Quantification
3.3. Pharmacometabolic Changes on Amino Acid and Neurotransmitter Levels in Larvae Measured by LC-MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horzmann, K.A.; Freeman, J.L. Making Waves: New Developments in Toxicology with the Zebrafish. Toxicol. Sci. 2018, 163, 5–12. [Google Scholar] [CrossRef]
- Brox, S.; Ritter, A.P.; Küster, E.; Reemtsma, T. A Quantitative HPLC-MS/MS Method for Studying Internal Concentrations and Toxicokinetics of 34 Polar Analytes in Zebrafish (Danio Rerio) Embryos. Anal. Bioanal. Chem. 2014, 406, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Heylen, L.; Partoens, M.; Mills, J.D.; Kaminski, R.M.; Godard, P.; Gillard, M.; de Witte, P.A.M.; Siekierska, A. Connectivity Mapping Using a Novel Sv2a Loss-of-Function Zebrafish Epilepsy Model as a Powerful Strategy for Anti-Epileptic Drug Discovery. Front. Mol. Neurosci. 2022, 15, 881933. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Basnet, R.M.; Zizioli, D.; Taweedet, S.; Finazzi, D.; Memo, M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019, 7, 23. [Google Scholar] [CrossRef]
- Ahmad, F.; Noldus, L.P.J.J.; Tegelenbosch, R.A.J.; Richardson, M.K. Zebrafish Embryos and Larvae in Behavioural Assays. Behaviour 2012, 149, 1241–1281. [Google Scholar] [CrossRef]
- Kozioł, E.; Luca, S.V.; Marcourt, L.; Nour, M.; Hnawia, E.; Jakubowicz-Gil, J.; Paduch, R.; Mroczek, T.; Wolfender, J.-L.; Skalicka-Woźniak, K. Efficient Extraction and Isolation of Skimmianine from New Caledonian Plant Medicosma Leratii and Evaluation of Its Effects on Apoptosis, Necrosis, and Autophagy. Phytochem. Lett. 2019, 30, 224–230. [Google Scholar] [CrossRef]
- Maciąg, M.; Michalak, A.; Skalicka-Woźniak, K.; Zykubek, M.; Ciszewski, A.; Budzyńska, B. Zebrafish and Mouse Models for Anxiety Evaluation—A Comparative Study with Xanthotoxin as a Model Compound. Brain Res. Bull. 2020, 165, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Fogley, R.; Zon, L.I. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. Adv. Exp. Med. Biol. 2016, 916, 103–124. [Google Scholar] [CrossRef]
- Kislyuk, S.; Kroonen, J.; Adams, E.; Augustijns, P.; de Witte, P.; Cabooter, D. Development of a Sensitive and Quantitative UHPLC-MS/MS Method to Study the Whole-Body Uptake of Pharmaceuticals in Zebrafish. Talanta 2017, 174, 780–788. [Google Scholar] [CrossRef]
- Halbach, K.; Ulrich, N.; Goss, K.U.; Seiwert, B.; Wagner, S.; Scholz, S.; Luckenbach, T.; Bauer, C.; Schweiger, N.; Reemtsma, T. Yolk Sac of Zebrafish Embryos as Backpack for Chemicals? Environ. Sci. Technol. 2020, 54, 10159–10169. [Google Scholar] [CrossRef] [PubMed]
- Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; De Borggraeve, W.; et al. Methylated Flavonoids as Anti-Seizure Agents: Naringenin 4′,7-Dimethyl Ether Attenuates Epileptic Seizures in Zebrafish and Mouse Models. Neurochem. Int. 2018, 112, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Guarin, M.; Faelens, R.; Giusti, A.; De Croze, N.; Léonard, M.; Cabooter, D.; Annaert, P.; de Witte, P.; Ny, A. Spatiotemporal Imaging and Pharmacokinetics of Fluorescent Compounds in Zebrafish Eleuthero-Embryos after Different Routes of Administration. Sci. Rep. 2021, 11, 12229. [Google Scholar] [CrossRef] [PubMed]
- Afrikanova, T.; Serruys, A.S.K.; Buenafe, O.E.M.; Clinckers, R.; Smolders, I.; de Witte, P.A.M.; Crawford, A.D.; Esguerra, C.V. Validation of the Zebrafish Pentylenetetrazol Seizure Model: Locomotor versus Electrographic Responses to Antiepileptic Drugs. PLoS ONE 2013, 8, e54166. [Google Scholar] [CrossRef]
- Orhan, I.E.; Senol Deniz, F.S.; Trædal-Henden, S.; Cerón-Carrasco, J.P.; den Haan, H.; Peña-García, J.; Pérez-Sánchez, H.; Emerce, E.; Skalicka-Wozniak, K. Profiling Auspicious Butyrylcholinesterase Inhibitory Activity of Two Herbal Molecules: Hyperforin and Hyuganin C. Chem. Biodivers. 2019, 16, e1900017. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Chen, B.; Jiang, J.D.; Zhang, J.P. Syntaxin 1B Mediates Berberine’s Roles in Epilepsy-like Behavior in a Pentylenetetrazole-Induced Seizure Zebrafish Model. Front. Mol. Neurosci. 2018, 11, 378. [Google Scholar] [CrossRef]
- Koziol, E.; Jóźwiak, K.; Budzyńska, B.; de Witte, P.A.M.; Copmans, D.; Skalicka-woźniak, K. Comparative Antiseizure Analysis of Diverse Natural Coumarin Derivatives in Zebrafish. Int. J. Mol. Sci. 2021, 22, 11420. [Google Scholar] [CrossRef]
- Adams, M.; Schneider, S.V.; Kluge, M.; Kessler, M.; Hamburger, M. Epilepsy in the Renaissance: A Survey of Remedies from 16th and 17th Century German Herbals. J. Ethnopharmacol. 2012, 143, 1–13. [Google Scholar] [CrossRef]
- Luszczki, J.J.; Andres-Mach, M.; Cisowski, W.; Mazol, I.; Glowniak, K.; Czuczwar, S.J. Osthole Suppresses Seizures in the Mouse Maximal Electroshock Seizure Model. Eur. J. Pharmacol. 2009, 607, 107–109. [Google Scholar] [CrossRef]
- Kozioł, E.; Deniz, F.S.S.; Orhan, I.E.; Marcourt, L.; Budzyńska, B.; Wolfender, J.L.; Crawford, A.D.; Skalicka-Woźniak, K. High-Performance Counter-Current Chromatography Isolation and Initial Neuroactivity Characterization of Furanocoumarin Derivatives from Peucedanum Alsaticum L (Apiaceae). Phytomedicine 2019, 15, 259–264. [Google Scholar] [CrossRef]
- Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr. Neuropharmacol. 2018, 17, 926–946. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Dager, S.R.; Parow, A.; Hirashima, F.; Demopulos, C.; Stoll, A.L.; Lyoo, I.K.; Dunner, D.L.; Renshaw, P.F. Lithium and Valproic Acid Treatment Effects on Brain Chemistry in Bipolar Disorder. Biol. Psychiatry 2004, 56, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.A. Mechanisms of Action of Antiepileptic Drugs. Seizure 1995, 4, 267–271. [Google Scholar] [CrossRef]
- Al-Griw, M.A.; Alshibani, Z.O.; Alghazeer, R.; Elhensheri, M.; Tabagh, R.M.; Eskandrani, A.A.; Alansari, W.S.; Habibulla, M.M.; Shamlan, G. Histone Deacetylase 2 Inhibitor Valproic Acid Attenuates Bisphenol A-Induced Liver Pathology in Male Mice. Sci. Rep. 2022, 12, 10258. [Google Scholar] [CrossRef]
- Brotzmann, K.; Wolterbeek, A.; Kroese, D.; Braunbeck, T. Neurotoxic Effects in Zebrafish Embryos by Valproic Acid and Nine of Its Analogues: The Fish-Mouse Connection? Arch. Toxicol. 2021, 95, 641–657. [Google Scholar] [CrossRef]
- Delage, C.; Palayer, M.; Etain, B.; Hagenimana, M.; Blaise, N.; Smati, J.; Chouchana, M.; Bloch, V.; Besson, V.C. Valproate, Divalproex, Valpromide: Are the Differences in Indications Justified? Biomed. Pharmacother. 2023, 158, 114051. [Google Scholar] [CrossRef]
- Mendes, G.D.; Lotufo, C.C.; Bosio-Guimarães, R.A.; de Castro, H.A.; Babadopulos, T.; Ribas Freitas, A.R.; de Antunes, N.J.; Nucci, G. De Comparative Bioavailability Study with Two Sodium Valproate Tablet Formulations Administered under Fasting Conditions in Healthy Subjects. Int. J. Clin. Pharmacol. Ther. 2022, 60, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lin, J.; Liu, X.; Li, W.; Ding, Y.; Zhang, Y.; Zhou, S.; Guo, N.; Li, Q. Characterization of the Locomotor Activities of Zebrafish Larvae under the Influence of Various Neuroactive Drugs. Ann. Transl. Med. 2018, 6, 173. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Sharma, P.; Mazumder, A.G.; Rana, A.K.; Sharma, S.; Singh, D. Development and Validation of Chemical Kindling in Adult Zebrafish: A Simple and Improved Chronic Model for Screening of Antiepileptic Agents. J. Neurosci. Methods 2020, 346, 108916. [Google Scholar] [CrossRef]
- Wallenburg, E.; Klok, B.; de Jong, K.; de Maat, M.; van Erp, N.; Stalpers-Konijnenburg, S.; Essink, G.; van Luin, M. Monitoring Protein-Unbound Valproic Acid Serum Concentrations in Clinical Practice. Ther. Drug Monit. 2017, 39, 269–272. [Google Scholar] [CrossRef]
- Gebuijs, I.G.E.; Metz, J.R.; Zethof, J.; Carels, C.E.L.; Wagener, F.A.D.T.G.; Von den Hoff, J.W. The Anti-Epileptic Drug Valproic Acid Causes Malformations in the Developing Craniofacial Skeleton of Zebrafish Larvae. Mech. Dev. 2020, 163, 103632. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Li, W.; Hu, F.; Chen, T.; Shen, X.; Feng, S. Study on Pharmacokinetics and Tissue Distribution of Pteryxin in Mice by Ultra-Pressure Liquid Chromatography with Tandem Mass Spectrometry. Biomed. Chromatogr. 2012, 26, 802–807. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Kwon, H.B.; Ahn, J.C.; Kang, D.; Kwon, S.H.; Park, J.A.; Kim, K.W. Functional and Developmental Analysis of the Blood-Brain Barrier in Zebrafish. Brain Res. Bull. 2008, 75, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Fleming, A.; Diekmann, H.; Goldsmith, P. Functional Characterisation of the Maturation of the Blood-Brain Barrier in Larval Zebrafish. PLoS ONE 2013, 8, e77548. [Google Scholar] [CrossRef]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Copmans, D.; Partoens, M.; Hunyadi, B.; Luyten, W.; De Witte, P. Zebrafish-Based Screening of Antiseizure Plants Used in Traditional Chinese Medicine: Magnolia officinalis Extract and Its Constituents Magnolol and Honokiol Exhibit Potent Anticonvulsant Activity in a Therapy-Resistant Epilepsy Model. ACS Chem Neurosci. 2020, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, S.E.; Chen, E.C.; Sandhu, M.R.S.; Deshpande, K.; Dhaher, R.; Hersey, D.; Eid, T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019, 33, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Liu, C.; Chen, X.; Zheng, L.; Zou, Y.; Wen, H.; Guan, P.; Lu, F.; Luo, Y.; Tan, G.; et al. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Adv. Sci. 2022, 9, e2105586. [Google Scholar] [CrossRef]
- Gao, D.; Ma, L.; Xie, Y.; Xiao, B.; Xue, S.; Xiao, W.; Zhou, Y.; Cai, X.; Yang, X. Electroacupuncture Promotes Autophagy by Regulating the AKT/MTOR Signaling Pathway in Temporal Lobe Epilepsy. Neurochem. Res. 2022, 47, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Nikbakht, F.; Barati, M.; Roghani, M.; Vazifekhah, S.; Khanizadeh, A.M.; Heidari, Z. Protective Effect of N-Acetyl Cysteine on the Mitochondrial Dynamic Imbalance in Temporal Lobe Epilepsy: Possible Role of MTOR. Neuropeptides 2022, 96, 102294. [Google Scholar] [CrossRef]
- Ma, C.; Teng, L.; Lin, G.; Guo, B.; Zhuo, R.; Qian, X.; Guan, T.; Wu, R.; Liu, Y.; Liu, M. L-Leucine Promotes Axonal Outgrowth and Regeneration via MTOR Activation. FASEB J. 2021, 35, e21526. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, S.; Narawane, S.; Fjose, A.; Verri, T.; Rønnestad, I. The Zebrafish Cationic Amino Acid Transporter/Glycoprotein-Associated Family: Sequence and Spatiotemporal Distribution during Development of the Transport System b(0,+) (Slc3a1/Slc7a9). Fish Physiol. Biochem. 2021, 47, 1507–1525. [Google Scholar] [CrossRef] [PubMed]
- Broide, R.S.; Salas, R.; Ji, D.; Paylor, R.; Patrick, J.W.; Dani, J.A.; De Biasi, M. Increased Sensitivity to Nicotine-Induced Seizures in Mice Expressing the L250T Alpha 7 Nicotinic Acetylcholine Receptor Mutation. Mol. Pharmacol. 2002, 61, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Krahl, S.E. Vagus Nerve Stimulation for Epilepsy: A Review of the Peripheral Mechanisms. Surg. Neurol. Int. 2012, 3, S47–S52. [Google Scholar] [CrossRef]
- Afra, P.; Adamolekun, B.; Aydemir, S.; Watson, G.D.R. Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy. Front. Med. Technol. 2021, 3, 696543. [Google Scholar] [CrossRef]
- Manta, S.; El Mansari, M.; Blier, P. Novel Attempts to Optimize Vagus Nerve Stimulation Parameters on Serotonin Neuronal Firing Activity in the Rat Brain. Brain Stimul. 2012, 5, 422–429. [Google Scholar] [CrossRef]
- Sourbron, J.; Lagae, L. Serotonin Receptors in Epilepsy: Novel Treatment Targets? Epilepsia Open 2022, 7, 231–246. [Google Scholar] [CrossRef]
- Sourbron, J.; Schneider, H.; Kecskés, A.; Liu, Y.; Buening, E.M.; Lagae, L.; Smolders, I.; De Witte, P. Serotonergic Modulation as Effective Treatment for Dravet Syndrome in a Zebrafish Mutant Model. ACS Chem. Neurosci. 2016, 7, 588–598. [Google Scholar] [CrossRef]
- Zhang, Y.; Kecskés, A.; Copmans, D.; Langlois, M.; Crawford, A.D.; Ceulemans, B.; Lagae, L.; de Witte, P.A.M.; Esguerra, C. V Pharmacological Characterization of an Antisense Knockdown Zebrafish Model of Dravet Syndrome: Inhibition of Epileptic Seizures by the Serotonin Agonist Fenfluramine. PLoS ONE 2015, 10, e0125898. [Google Scholar] [CrossRef]
- Cullingford, T. The Vagus Nerve–A Common Route for Epilepsy Therapies? Lancet. Neurol. 2004, 3, 518. [Google Scholar] [CrossRef]
- Pineda, R.; Beattie, C.E.; Hall, C.W. Closed-Loop Neural Stimulation for Pentylenetetrazole-Induced Seizures in Zebrafish. Dis. Model. Mech. 2013, 6, 64–71. [Google Scholar] [CrossRef]
- Jackstadt, M.M.; Chamberlain, C.A.; Doonan, S.R.; Shriver, L.P.; Patti, G.J. A Multidimensional Metabolomics Workflow to Image Biodistribution and Evaluate Pharmacodynamics in Adult Zebrafish. Dis. Model. Mech. 2022, 15, dmm049550. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Holmberg, A.; Holmgren, S. Development of Enteric and Vagal Innervation of the Zebrafish (Danio Rerio) Gut. J. Comp. Neurol. 2008, 508, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Kuil, L.E.; Chauhan, R.K.; Cheng, W.W.; Hofstra, R.M.W.; Alves, M.M. Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Disease. Front. Cell Dev. Biol. 2021, 8, 629073. [Google Scholar] [CrossRef] [PubMed]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Yan, R.; Li, Y.; Müller, J.; Zhang, Y.; Singer, S.; Xia, L.; Zhong, X.; Gertsch, J.; Altmann, K.H.; Zhou, Q. Mechanism of substrate transport and inhibition of the human LAT1-4F2hc amino acid transporter. Cell Discov. 2021, 7, 16. [Google Scholar] [CrossRef]
Treatment/Concentration/Time | [ng/g] | [µM] | % Absorbed |
---|---|---|---|
Pteryxin/1 µM/1 h | 468.7 ± 44.1 | 1.2 ± 0.1 | 1.2% |
Pteryxin/10 µM/1 h | 1243.3 ± 201.3 | 3.2 ± 0.5 | 32.2% |
Pteryxin/20 µM/5 min | 820.0 ± 46.3 | 2.1 ± 0.1 | 10.1% |
Pteryxin/20 µM/30 min | 2530.0 ± 105.4 | 6.5 ± 0.3 | 32.7% |
Pteryxin/20 µM/1 h | 4280.0 ± 284.8 | 11.1 ± 0.7 | 55.4% |
Pteryxin/20 μM/18 h | 3406.7 ± 213.6 | 8.8 ± 0.5 | 44.0% |
Pteryxin/20 μM/without larvae | 4090.6 ± 381.6 | 20.5 ± 0.1 | - |
VPN/VPA 100 µM 1 h | 940.7 ± 40.8 | 6.5 ± 0.3 | 6.5% |
VPN/VPA 500 µM 1 h | 1680.0 ± 30.0 | 11.6 ± 0.2 | 2.3% |
VPN/VPA 1 mM 1 h | 4740.0 ± 111.4 | 32.9 ± 0.8 | 3.3% |
VPN/VPA 5 mM 5 min | 5596.6 ± 289.9 | 38.8 ± 2.0 | 0.8% |
VPN/VPA 5 mM 30 min | 10,366.7 ± 472.6 | 71.9 ± 3.3 | 1.4% |
VPN/VPA 5 mM 1 h | 18,166.7 ± 404.1 | 126.0 ± 2.8 | 2.5% |
VPN/VPA 10 mM 1 h | 33,933.3 ± 1457.2 | 235.3 ± 10.1 | 9.4% |
VPN/VPA (5 mM) 18 h | 5473.33 ± 225.02 | 37.97 ± 1.57 | 0.76% (metabolism) |
VPN/VPA 5 mM without larvae | 734,333 ± 5859 | 5092 ± 40.6 | 100% |
Medium control | No detected | Not detected | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, A.; Pellegata, D.; Morozova, V.; Kozioł, E.; Budzyńska, B.; Lee, S.M.-Y.; Gertsch, J.; Skalicka-Woźniak, K. Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation. Cells 2023, 12, 1540. https://doi.org/10.3390/cells12111540
Skiba A, Pellegata D, Morozova V, Kozioł E, Budzyńska B, Lee SM-Y, Gertsch J, Skalicka-Woźniak K. Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation. Cells. 2023; 12(11):1540. https://doi.org/10.3390/cells12111540
Chicago/Turabian StyleSkiba, Adrianna, Daniele Pellegata, Veronika Morozova, Ewelina Kozioł, Barbara Budzyńska, Simon Ming-Yuen Lee, Jürg Gertsch, and Krystyna Skalicka-Woźniak. 2023. "Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation" Cells 12, no. 11: 1540. https://doi.org/10.3390/cells12111540
APA StyleSkiba, A., Pellegata, D., Morozova, V., Kozioł, E., Budzyńska, B., Lee, S. M.-Y., Gertsch, J., & Skalicka-Woźniak, K. (2023). Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation. Cells, 12(11), 1540. https://doi.org/10.3390/cells12111540