Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Samples
2.2. KIR and HLA Class I Genotyping
2.3. KIR Gene, Genotype and Haplotype Frequencies Analysis
2.4. HLA–KIR Combinations in Medellin Population
2.5. Statistical Analysis
3. Results
3.1. KIR Genes and Genotypes Frequencies in a Colombian Population
3.2. Haplotype Frequencies
3.3. KIR-HLA Combinations
3.4. Genetic Distance Comparative Analysis with Regional and Worldwide Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Valiante, N.M.; Lienert, K.; Shilling, H.G.; Smits, B.J.; Parham, P. Killer cell receptors: Keeping pace with MHC class I evolution. Immunol. Rev. 1997, 155, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Vilches, C.; Parham, P. KIR: Diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 2002, 20, 217–251. [Google Scholar] [CrossRef] [PubMed]
- van Bergen, J.; Thompson, A.; van der Slik, A.; Ottenhoff, T.H.; Gussekloo, J.; Koning, F. Phenotypic and functional characterization of CD4 T cells expressing killer Ig-like receptors. J. Immunol. 2004, 173, 6719–6726. [Google Scholar] [CrossRef]
- Mingari, M.C.; Ponte, M.; Cantoni, C.; Vitale, C.; Schiavetti, F.; Bertone, S.; Bellomo, R.; Cappai, A.T.; Biassoni, R. HLA-class I-specific inhibitory receptors in human cytolytic T lymphocytes: Molecular characterization, distribution in lymphoid tissues and co-expression by individual T cells. Int. Immunol. 1997, 9, 485–491. [Google Scholar] [CrossRef] [PubMed]
- De Libero, G. Control of gammadelta T cells by NK receptors. Microbes Infect. 1999, 1, 263–267. [Google Scholar] [CrossRef]
- Pende, D.; Falco, M.; Vitale, M.; Cantoni, C.; Vitale, C.; Munari, E.; Bertaina, A.; Moretta, F.; Del Zotto, G.; Pietra, G.; et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front. Immunol. 2019, 28, 1179. [Google Scholar] [CrossRef]
- Höglund, P.; Brodin, P. Current perspectives of natural killer cell education by MHC class I molecules. Nat. Rev. Immunol. 2010, 10, 724–734. [Google Scholar] [CrossRef]
- Horowitz, A.; Djaoud, Z.; Nemat-Gorgani, N.; Blokhuis, J.; Hilton, H.G.; Béziat, V.; Malmberg, K.J.; Norman, P.J.; Guethlein, L.A.; Parham, P. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 2016, 3, eaag1672. [Google Scholar] [CrossRef]
- Moretta, L.; Locatelli, F.; Pende, D.; Sivori, S.; Falco, M.; Bottino, C.; Mingari, M.C.; Moretta, A. Human NK receptors: From the molecules to the therapy of high risk leukemias. FEBS Lett. 2011, 585, 1563–1567. [Google Scholar] [CrossRef]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Lanier, L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 2008, 9, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.S.; Purdy, A.K. Structure/function of human killer cell immunoglobulin-like receptors: Lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011, 132, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Wende, H.; Colonna, M.; Ziegler, A.; Volz, A. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.4. Mamm. Genome. 1999, 10, 154–160. [Google Scholar] [CrossRef]
- Middleton, D.; Gonzelez, F. The extensive polymorphism of KIR genes. Immunology 2010, 129, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Uhrberg, M.; Valiante, N.M.; Shum, B.P.; Shilling, H.G.; Lienert-Weidenbach, K.; Corliss, B.; Tyan, D.; Lanier, L.L.; Parham, P. Human diversity in killer cell inhibitory receptor genes. Immunity 1997, 7, 753–763. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chida, S.; Geraghty, D.E.; Dupont, B. The killer cell immunoglobulin-like receptor (KIR) genomic region: Gene-order, haplotypes and allelic polymorphism. Immunol. Rev. 2002, 190, 40–52. [Google Scholar] [CrossRef]
- Béziat, V.; Hilton, H.G.; Norman, P.J.; Traherne, J.A. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2017, 150, 248–264. [Google Scholar] [CrossRef]
- Husain, B.; Ramani, S.R.; Chiang, E.; Lehoux, I.; Paduchuri, S.; Arena, T.A.; Patel, A.; Wilson, B.; Chan, P.; Franke, Y.; et al. A Platform for Extracellular Interactome Discovery Identifies Novel Functional Binding Partners for the Immune Receptors B7-H3/CD276 and PVR/CD155. Mol. Cell Proteom. 2019, 11, 2310–2323. [Google Scholar] [CrossRef]
- Fittje, P.; Hœlzemer, A.; Garcia-Beltran, W.F.; Vollmers, S.; Niehrs, A.; Hagemann, K.; Martrus, G.; Körner, C.; Kirchhoff, F.; Sauter, D.; et al. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog. 2022, 18, e1010572. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Berjis, A.; Konge, J.C.; Mahoney, K.M.; Klee, A.N.; Freeman, S.S.; Chen, C.H.; Jegede, O.A.; Catalano, P.J.; Pignon, J.C.; et al. KIR3DL3 Is an Inhibitory Receptor for HHLA2 that Mediates an Alternative Immunoinhibitory Pathway to PD1. Cancer Immunol. Res. 2021, 9, 156–169. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Hölzemer, A.; Martrus, G.; Chung, A.W.; Pacheco, Y.; Simoneau, C.R.; Rucevic, M.; Lamothe-Molina, P.A.; Pertel, T.; Kim, T.E.; et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat. Immunol. 2016, 17, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.P.; Gao, X.; Lee, J.H.; Nelson, G.W.; Detels, R.; Goedert, J.J.; Buchbinder, S.; Hoots, K.; Vlahov, D.; Trowsdale, J.; et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 2002, 31, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Khakoo, S.I.; Thio, C.L.; Martin, M.P.; Brooks, C.R.; Gao, X.; Astemborski, J.; Cheng, J.; Goedert, J.J.; Vlahov, D.; Hilgartner, M.; et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 2004, 305, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.W.; Martin, M.P.; Gladman, D.; Wade, J.; Trowsdale, J.; Carrington, M. Cutting edge: Heterozygote advantage in autoimmune disease: Hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J. Immunol. 2004, 173, 4273–4276. [Google Scholar] [CrossRef]
- van der Slik, A.R.; Koeleman, B.P.; Verduijn, W.; Bruining, G.J.; Roep, B.O.; Giphart, M.J. KIR in type 1 diabetes: Disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes. 2003, 52, 2639–2642. [Google Scholar] [CrossRef]
- Carrington, M.; Wang, S.; Martin, M.P.; Gao, X.; Schiffman, M.; Cheng, J.; Herrero, R.; Rodriguez, A.C.; Kurman, R.; Mortel, R.; et al. Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J. Exp. Med. 2005, 201, 1069–1075. [Google Scholar] [CrossRef]
- Hiby, S.E.; Walker, J.J.; O’shaughnessy, K.M.; Redman, C.W.; Carrington, M.; Trowsdale, J.; Moffett, A. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 2004, 200, 957–965. [Google Scholar] [CrossRef]
- Sekine, T.; Marin, D.; Cao, K.; Li, L.; Mehta, P.; Shaim, H.; Sobieski, C.; Jones, R.; Oran, B.; Hosing, C.; et al. Specific combinations of donor and recipient KIR-HLA genotypes predict for large differences in outcome after cord blood transplantation. Blood 2016, 128, 297–312. [Google Scholar] [CrossRef]
- Martínez-Losada, C.; Martín, C.; Gonzalez, R.; Manzanares, B.; García-Torres, E.; Herrera, C. Patients Lacking a KIR-Ligand of HLA Group C1 or C2 Have a Better Outcome after Umbilical Cord Blood Transplantation. Front. Immunol. 2017, 13, 810. [Google Scholar] [CrossRef]
- Solloch, U.V.; Schefzyk, D.; Schäfer, G.; Massalski, C.; Kohler, M.; Pruschke, J.; Heidl, A.; Schetelig, J.; Schmidt, A.H.; Lange, V.; et al. Estimation of German KIR Allele Group Haplotype Frequencies. Front. Immunol. 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.H.; Kim, J.; Lim, S.A.; Kim, J.; Kim, S.J.; Lee, K.M. NK Cell-Based Immunotherapies in Cancer. Immune. Netw. 2020, 9, e14. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, J.A.; Nocedal, I.; Ladner, M.B.; Single, R.M.; Trachtenberg, E.A. Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH populations. Immunogenetics 2012, 64, 719–737. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, C.; Yunis, E.J.; Yunis, J.J. Diversity of KIR profiles in Colombian populations. In Proceedings of the 36th Annual ASHI Meeting Abstracts 2010, Hollywood, FL, USA, 26–30 September 2009; p. S74. [Google Scholar] [CrossRef]
- Rishishwar, L.; Conley, A.B.; Wigington, C.H.; Wang, L.; Valderrama-Aguirre, A.; Jordan, I.K. Ancestry, admixture and fitness in Colombian genomes. Sci. Rep. 2015, 5, 12376. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, H.; Forouzandeh, M.; Rasaee, M.J.; Rahbarizadeh, F. Modified salting-out method: High-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J. Clin. Lab. Anal. 2005, 19, 229–232. [Google Scholar] [CrossRef]
- Mack, S.J.; Gourraud, P.A.; Single, R.M.; Thomson, G.; Hollenbach, J.A. Analytical methods for immunogenetic population data. In Immunogenetics: Methods and Applications in Clinical Practice; Christiansen, F.T., Tait, B.D., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 215–241. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Tang, J.; Kaslow, R.A.; Zhang, K. Haplotype inference for present-absent genotype data using previously identified haplotypes and haplotype patterns. Bioinformatics 2007, 23, 2399–2406. [Google Scholar] [CrossRef]
- Pyo, C.W.; Guethlein, L.A.; Vu, Q.; Wang, R.; Abi-Rached, L.; Norman, P.J.; Marsh, S.G.; Miller, J.S.; Parham, P.; Geraghty, D.E. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS ONE 2010, 5, e15115. [Google Scholar] [CrossRef]
- Gourraud, P.A.; Meenagh, A.; Cambon-Thomsen, A.; Middleton, D. Linkage disequilibrium organization of the human KIR superlocus: Implications for KIR data analyses. Immunogenetics 2010, 62, 729–740. [Google Scholar] [CrossRef]
- Vierra-Green, C.; Roe, D.; Hou, L.; Hurley, C.K.; Rajalingam, R.; Reed, E.; Lebedeva, T.; Yu, N.; Stewart, M.; Noreen, H.; et al. Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals. PLoS ONE 2012, 7, e47491. [Google Scholar] [CrossRef] [Green Version]
- Vierra-Green, C.; Roe, D.; Jayaraman, J.; Trowsdale, J.; Traherne, J.; Kuang, R.; Spellman, S.; Maiers, M. Estimating KIR Haplotype Frequencies on a Cohort of 10,000 Individuals: A Comprehensive Study on Population Variations, Typing Resolutions, and Reference Haplotypes. PLoS ONE 2016, 11, e0163973. [Google Scholar] [CrossRef]
- Hilton, H.G.; Guethlein, L.A.; Goyos, A.; Nemat-Gorgani, N.; Bushnell, D.A.; Norman, P.J.; Parham, P. Polymorphic HLA-C Receptors Balance the Functional Characteristics of KIR Haplotypes. J. Immunol. 2015, 195, 3160–3170. [Google Scholar] [CrossRef]
- Foley, B.A.; De Santis, D.; Van Beelen, E.; Lathbury, L.J.; Christiansen, F.T.; Witt, C.S. The reactivity of Bw4+ HLA-B and HLA-A alleles with KIR3DL1: Implications for patient and donor suitability for haploidentical stem cell transplantations. Blood 2008, 112, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Döhring, C.; Scheidegger, D.; Samaridis, J.; Cella, M.; Colonna, M. A human killer inhibitory receptor specific for HLA-A1,2. J. Immunol. 1996, 156, 3098–3101. [Google Scholar]
- Hansasuta, P.; Dong, T.; Thananchai, H.; Weekes, M.; Willberg, C.; Aldemir, H.; Rowland-Jones, S.; Braud, V.M. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur. J. Immunol. 2004, 34, 1673–1679. [Google Scholar] [CrossRef]
- Moesta, A.K.; Graef, T.; Abi-Rached, L.; Older Aguilar, A.M.; Guethlein, L.A.; Parham, P. Humans differ from other hominids in lacking an activating NK cell receptor that recognizes the C1 epitope of MHC class I. J. Immunol. 2010, 185, 4233–4237. [Google Scholar] [CrossRef]
- Felsenstein, J. PHYLIP (Phylogeny Inference Package) Version 3.698; Distributed by the author; Department of Genome Sciences, University of Washington: Seattle, DC, USA, 2005. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Prakash, S.; Alam, S.; Sharma, R.K.; Sonawane, A.; Imran, M.; Agrawal, S. Distribution of Killer cell immunoglobulin like receptor genes in end stage renal disease among North Indian population. Hum. Immunol. 2013, 74, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Gendzekhadze, K.; Norman, P.J.; Abi-Rached, L.; Layrisse, Z.; Parham, P. High KIR diversity in Amerindians is maintained using few gene-content haplotypes. Immunogenetics 2006, 58, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Gendzekhadze, K.; Norman, P.J.; Abi-Rached, L.; Graef, T.; Moesta, A.K.; Layrisse, Z.; Parham, P. Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. Proc. Natl. Acad. Sci. USA 2009, 106, 18692–18697. [Google Scholar] [CrossRef]
- Flores, A.C.; Marcos, C.Y.; Paladino, N.; Capucchio, M.; Theiler, G.; Arruvito, L.; Pardo, R.; Habegger, A.; Williams, F.; Middleton, D.; et al. KIR genes polymorphism in Argentinean Caucasoid and Amerindian populations. Tissue Antigens 2007, 69, 568–576. [Google Scholar] [CrossRef]
- D’Silva, S.Z.; Dhanda, S.K.; Singh, M. Killer immunoglobulin like receptor gene profiling in Western Indian population. Hum. Immunol. 2019, 80, 427–428. [Google Scholar] [CrossRef]
- Closa, L.; Vidal, F.; Herrero, M.J.; Caro, J.L. Distribution of human killer cell immunoglobulin-like receptors and ligands among blood donors of Catalonia. HLA 2020, 95, 179–188. [Google Scholar] [CrossRef]
- Machado-Sulbaran, A.C.; Muñoz-Valle, J.F.; Ramírez-Dueñas, M.G.; Baños-Hernández, C.J.; Graciano-Machuca, O.; Velarde-De la Cruz, E.E.; Parra-Rojas, I.; Sánchez-Hernández, P.E. Distribution of KIR genes and KIR2DS4 gene variants in two Mexican Mestizo populations. Hum. Immunol. 2017, 78, 614–620. [Google Scholar] [CrossRef]
- Castro-Santos, P.; Verdugo, R.A.; Díaz-Peña, R. Killer cell immunoglobulin-like receptor genotypes in a Chilean population from Talca. Hum. Immunol. 2018, 79, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Fernández-Mestre, M.; Padrón, D.; Toro, F.; Silva, N.; Tassinari, P.; Blanca, I.; Martin, M.P.; Carrington, M.; Layrisse, Z. Distribution of killer cell immunoglobulin-like receptor genes in the mestizo population from Venezuela. Tissue Antigens 2010, 75, 724–729. [Google Scholar] [CrossRef]
- Franceschi, D.S.; Mazini, P.S.; Rudnick, C.C.; Sell, A.M.; Tsuneto, L.T.; de Melo, F.C.; Braga, M.A.; Peixoto, P.R.; Visentainer, J.E. Association between killer-cell immunoglobulin-like receptor genotypes and leprosy in Brazil. Tissue Antigens 2008, 72, 478–482. [Google Scholar] [CrossRef]
- Perce-da-Silva, D.S.; Silva, L.A.; Lima-Junior, J.C.; Cardoso-Oliveira, J.; Ribeiro-Alves, M.; Santos, F.; Porto, L.C.; Oliveira-Ferreira, J.; Banic, D.M. Killer cell immunoglobulin-like receptor (KIR) gene diversity in a population naturally exposed to malaria in Porto Velho, Northern Brazil. Tissue Antigens 2015, 85, 190–199. [Google Scholar] [CrossRef]
- Marangon, A.V.; Silva, G.F.; de Moraes, C.F.; Grotto, R.M.; Pardini, M.I.; de Pauli, D.S.; Sell, A.M.; Visentainer, J.E.; Moliterno, R.A. KIR genes and their human leukocyte antigen ligands in the progression to cirrhosis in patients with chronic hepatitis C. Hum. Immunol. 2011, 72, 1074–1078. [Google Scholar] [CrossRef]
- Augusto, D.G.; Lobo-Alves, S.C.; Melo, M.F.; Pereira, N.F.; Petzl-Erler, M.L. Activating KIR and HLA Bw4 ligands are associated to decreased susceptibility to pemphigus foliaceus, an autoimmune blistering skin disease. PLoS ONE 2012, 7, e39991. [Google Scholar] [CrossRef]
- Gentle, N.L.; Loubser, S.; Paximadis, M.; Puren, A.; Tiemessen, C.T. Killer-cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) class I genetic diversity in four South African populations. Hum. Immunol. 2017, c8, 503–509. [Google Scholar] [CrossRef]
- Denis, L.; Sivula, J.; Gourraud, P.A.; Kerdudou, N.; Chout, R.; Ricard, C.; Moisan, J.P.; Gagne, K.; Partanen, J.; Bignon, J.D. Genetic diversity of KIR natural killer cell markers in populations from France, Guadeloupe, Finland, Senegal and Réunion. Tissue Antigens 2005, 66, 267–276. [Google Scholar] [CrossRef]
- Middleton, D.; Meenagh, A.; Sleator, C.; Gourraud, P.A.; Ayna, T.; Tozkir, H.; Köse, A.A.; Azizleri, G.; Diler, A.S. No association of KIR genes with Behcet’s disease. Tissue Antigens 2007, 70, 435–438. [Google Scholar] [CrossRef]
- Ashouri, E.; Farjadian, S.; Reed, E.F.; Ghaderi, A.; Rajalingam, R. KIR gene content diversity in four Iranian populations. Immunogenetics 2009, 61, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Keating, S.E.; Ní Chorcora, C.; Dring, M.M.; Stallings, R.L.; O’Meara, A.; Gardiner, C.M. Increased frequencies of the killer immunoglobulin-like receptor genes KIR2DL2 and KIR2DS2 are associated with neuroblastoma. Tissue Antigens 2015, 86, 172–177. [Google Scholar] [CrossRef]
- Du, Z.; Gjertson, D.W.; Reed, E.F.; Rajalingam, R. Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics 2007, 59, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, J.A.; Meenagh, A.; Sleator, C.; Alaez, C.; Bengoche, M.; Canossi, A.; Contreras, G.; Creary, L.; Evseeva, I.; Gorodezky, C.; et al. Report from the killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop: Worldwide variation in the KIR loci and further evidence for the co-evolution of KIR and HLA. Tissue Antigens 2010, 76, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chaisri, S.; Kitcharoen, K.; Romphruk, A.V.; Romphruk, A.; Witt, C.S.; Leelayuwat, C. Polymorphisms of killer immunoglobulin-like receptors (KIRs) and HLA ligands in northeastern Thais. Immunogenetics 2013, 65, 645–653. [Google Scholar] [CrossRef]
- Hiby, S.E.; Ashrafian-Bonab, M.; Farrell, L.; Single, R.M.; Balloux, F.; Carrington, M.; Moffett, A.; Ebrahimi, Z. Distribution of killer cell immunoglobulin-like receptors (KIR) and their HLA-C ligands in two Iranian populations. Immunogenetics 2010, 62, 65–73. [Google Scholar] [CrossRef]
- Cai, J.; Liu, X.; Wang, J.; Tian, W. Killer cell immunoglobulin-like receptor (KIR) genes in 4 distinct populations and 51 families in mainland China. Hum. Immunol. 2012, 73, 1023–1030. [Google Scholar] [CrossRef]
- Zhen, J.; Wang, D.; He, L.; Zou, H.; Xu, Y.; Gao, S.; Yang, B.; Deng, Z. Genetic profile of KIR and HLA in southern Chinese Han population. Hum. Immunol. 2014, 75, 59–64. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H.; Shen, Y.; Dong, Y.; Li, Y.; Dong, Z.; Guo, C.; Shi, L.; Yao, Y.; Yu, J. Distribution of KIR genes in Han population in Yunnan Province: Comparison with other Han populations in China. Int. J. Immunogenet. 2013, 40, 361–368. [Google Scholar] [CrossRef]
- Tao, S.; He, Y.; Dong, L.; He, J.; Chen, N.; Wang, W.; Han, Z.; Zhang, W.; He, J.; Zhu, F. Associations of killer cell immunoglobulin-like receptors with acute myeloid leukemia in Chinese populations. Hum. Immunol. 2017, 78, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Yawata, M.; Yawata, N.; Draghi, M.; Little, A.M.; Partheniou, F.; Parham, P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J. Exp. Med. 2006, 203, 633–645. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, H.B.; Jang, J.P.; Baek, I.C.; Choi, E.J.; Park, M.; Kim, T.G.; Oh, S.T. HLA-Cw polypmorphism and killer cell immunoglobulin-like receptor (KIR) gene analysis in Korean colorectal cancer patients. Int. J. Surg. 2014, 12, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rodríguez, M.E.; Sandoval-Ramírez, L.; Díaz-Flores, M.; Marsh, S.G.; Valladares-Salgado, A.; Madrigal, J.A.; Mejía-Arangure, J.M.; García, C.A.; Huerta-Zepeda, A.; Ibarra-Cortés, B.; et al. KIR gene in ethnic and Mestizo populations from Mexico. Hum. Immunol. 2006, 67, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.B.; Beltrame, M.H.; Ho, B.; Marin, W.M.; Dandekar, R.; Montero-Martín, G.; Fernández-Viña, M.A.; Hurtado, A.M.; Hill, K.R.; Tsuneto, L.T.; et al. Remarkably Low KIR and HLA Diversity in Amerindians Reveals Signatures of Strong Purifying Selection Shaping the Centromeric KIR Region. Mol. Biol. Evol. 2022, 39, msab298. [Google Scholar] [CrossRef] [PubMed]
- Augusto, D.G.; Piovezan, B.Z.; Tsuneto, L.T.; Callegari-Jacques, S.M.; Petzl-Erler, M.L. KIR gene content in Amerindians indicates influence of demographic factors. PLoS ONE 2013, 8, e56755. [Google Scholar] [CrossRef]
- Single, R.M.; Martin, M.P.; Gao, X.; Meyer, D.; Yeager, M.; Kidd, J.R.; Kidd, K.K.; Carrington, M. Global diversity and evidence for coevolution of KIR and HLA. Nat. Genet. 2007, 39, 1114–1119. [Google Scholar] [CrossRef]
- Ewerton, P.D.; Leite Mde, M.; Magalhães, M.; Sena, L.; Melo dos Santos, E.J. Amazonian Amerindians exhibit high variability of KIR profiles. Immunogenetics 2007, 59, 625–630. [Google Scholar] [CrossRef]
- Augusto, D.G.; Amorim, L.M.; Farias, T.D.; Petzl-Erler, M.L. KIR and HLA genotyping of Japanese descendants from Curitiba, a city of predominantly European ancestry from Southern Brazil. Hum. Immunol. 2016, 77, 336–337. [Google Scholar] [CrossRef]
- de Alencar, J.B.; Zacarias, J.M.V.; Moura, B.L.D.S.G.; Braga, M.A.; Visentainer, J.E.L.; Sell, A.M. KIR and HLA ligands demonstrate genetic inheritance diversity in Japanese descendants from Paraná, Brazil. Hum. Immunol. 2018, 79, 191–192. [Google Scholar] [CrossRef]
- Rajalingam, R.; Du, Z.; Meenagh, A.; Luo, L.; Kavitha, V.J.; Pavithra-Arulvani, R.; Vidhyalakshmi, A.; Sharma, S.K.; Balazs, I.; Reed, E.F.; et al. Distinct diversity of KIR genes in three southern Indian populations: Comparison with world populations revealed a link between KIR gene content and pre-historic human migrations. Immunogenetics 2008, 60, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Shilling, H.G.; Guethlein, L.A.; Cheng, N.W.; Gardiner, C.M.; Rodriguez, R.; Tyan, D.; Parham, P. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J. Immunol. 2002, 168, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Johnson, C.; Jayaraman, J.; Simecek, N.; Noble, J.; Moffatt, M.F.; Cookson, W.O.; Trowsdale, J.; Traherne, J.A. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res. 2012, 22, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Arnheim, L.; Dillner, J.; Sanjeevi, C.B. A population-based cohort study of KIR genes and genotypes in relation to cervical intraepithelial neoplasia. Tissue Antigens 2005, 65, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, M.; Velickovic, Z.; Dunckley, H. Diversity of killer cell immunoglobulin-like receptor genes in Pacific Islands populations. Immunogenetics 2006, 58, 523–532. [Google Scholar] [CrossRef]
- Conley, A.B.; Rishishwar, L.; Norris, E.T.; Valderrama-Aguirre, A.; Mariño-Ramírez, L.; Medina-Rivas, M.A.; Jordan, I.K. A Comparative Analysis of Genetic Ancestry and Admixture in the Colombian Populations of Chocó and Medellín. G3 (Bethesda) 2017, 7, 3435–3447. [Google Scholar] [CrossRef]
- Williams, F.; duToit, E.D.; Middleton, D. KIR allele frequencies in a Xhosa population from South Africa. Hum. Immunol. 2004, 65, 1084–1085. [Google Scholar] [CrossRef]
- Williams, F.; Hawkins, B.; Middleton, D. HLA-A and -B and KIR Gene Allele Frequencies in a Chinese Population from Hong Kong. Hum. Immunol. 2004, 65, 948–952. [Google Scholar] [CrossRef]
- Augusto, D.G.; Zehnder-Alves, L.; Pincerati, M.R.; Martin, M.P.; Carrington, M.; Petzl-Erler, M.L. Diversity of the KIR gene cluster in an urban Brazilian population. Immunogenetics 2012, 64, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Moradi, S.; Stankovic, S.; O’Connor, G.M.; Pymm, P.; MacLachlan, B.J.; Faoro, C.; Retière, C.; Sullivan, L.C.; Saunders, P.M.; Widjaja, J.; et al. Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat. Commun. 2021, 12, 2173. [Google Scholar] [CrossRef]
- Zhi-ming, L.; Yu-lian, J.; Zhao-lei, F.; Chun-xiao, W.; Zhen-fang, D.; Bing-chang, Z.; Yue-ran, Z. Polymorphisms of killer cell immunoglobulin-like receptor gene: Possible association with susceptibility to or clearance of hepatitis B virus infection in Chinese Han population. Croat. Med. J. 2007, 48, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Juarez, A.; Gonzalez, R.; Camacho, A.; Manzanares-Martin, B.; Caruz, A.; Martinez-Peinado, A.; Torre-Cisneros, J.; Pineda, J.A.; Peña, J.; Rivero, A. Natural killer KIR3DS1 is closely associated with HCV viral clearance and sustained virological response in HIV/HCV patients. PLoS ONE 2013, 8, e61992. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Altfeld, M. Role of KIR3DS1 in human diseases. Front. Immunol. 2012, 3, 326. [Google Scholar] [CrossRef]
- Gabriel, I.H.; Sergeant, R.; Szydlo, R.; Apperley, J.F.; DeLavallade, H.; Alsuliman, A.; Khoder, A.; Marin, D.; Kanfer, E.; Cooper, N.; et al. Interaction between KIR3DS1 and HLA-Bw4 predicts for progression-free survival after autologous stem cell transplantation in patients with multiple myeloma. Blood 2010, 116, 2033–2039. [Google Scholar] [CrossRef] [PubMed]
- Venstrom, J.M.; Gooley, T.A.; Spellman, S.; Pring, J.; Malkki, M.; Dupont, B.; Petersdorf, E.; Hsu, K.C. Donor activating KIR3DS1 is associated with decreased acute GVHD in unrelated allogeneic hematopoietic stem cell transplantation. Blood 2010, 115, 3162–3165. [Google Scholar] [CrossRef]
- Lienert, K.; Parham, P. Evolution of MHC class I genes in higher primates. Immunol. Cell Biol. 1996, 74, 349–356. [Google Scholar] [CrossRef]
- Díaz-Peña, R.; Vidal-Castiñeira, J.R.; Moro-García, M.A.; Alonso-Arias, R.; Castro-Santos, P. Significant association of the KIR2DL3/HLA-C1 genotype with susceptibility to Crohn’s disease. Hum. Immunol. 2016, 77, 104–109. [Google Scholar] [CrossRef]
A Haplotype Member | B Haplotype-Specific | Framework/Pseudogenes | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Genotype ID | 2DL1 | 2DL3 | 3DL1 | 2DS4 | 2DL2 | 2DL5 | 2DS1 | 2DS2 | 2DS3 | 2DS5 | 3DS1 | 2DL4 | 3DL2 | 3DL3 | 2DP1 | 3DP1 | N° loci | n | Genotype Frequencies (%) |
BX | 2 | 13 | 31 | 19.25 | ||||||||||||||||
BX | 3 | 15 | 28 | 17.39 | ||||||||||||||||
AA | 1 | 9 | 20 | 12.42 | ||||||||||||||||
BX | 14 | 10 | 12 | 7.453 | ||||||||||||||||
BX | 4 | 11 | 11 | 6.832 | ||||||||||||||||
BX | 6 | 16 | 8 | 4.969 | ||||||||||||||||
BX | 71 | 12 | 4 | 2.484 | ||||||||||||||||
BX | 5 | 13 | 4 | 2.484 | ||||||||||||||||
BX | 68 | 13 | 4 | 2.484 | ||||||||||||||||
BX | 7 | 15 | 4 | 2.484 | ||||||||||||||||
BX | 69 | 11 | 3 | 1.863 | ||||||||||||||||
BX | 76 | 12 | 3 | 1.863 | ||||||||||||||||
BX | 72 | 8 | 2 | 1.242 | ||||||||||||||||
BX | 188 | 12 | 2 | 1.242 | ||||||||||||||||
BX | 13 | 14 | 2 | 1.242 | ||||||||||||||||
BX | 70 | 14 | 2 | 1.242 | ||||||||||||||||
BX | NPR11 | 9 | 1 | 0.621 | ||||||||||||||||
BX | NPR21 | 10 | 1 | 0.621 | ||||||||||||||||
BX | 106 | 11 | 1 | 0.621 | ||||||||||||||||
BX | 30 | 11 | 1 | 0.621 | ||||||||||||||||
BX | 16 | 11 | 1 | 0.621 | ||||||||||||||||
BX | 43 | 11 | 1 | 0.621 | ||||||||||||||||
BX | 228 | 12 | 1 | 0.621 | ||||||||||||||||
BX | 394 | 12 | 1 | 0.621 | ||||||||||||||||
BX | 27 | 12 | 1 | 0.621 | ||||||||||||||||
BX | NPR31 | 12 | 1 | 0.621 | ||||||||||||||||
BX | 81 | 13 | 1 | 0.621 | ||||||||||||||||
BX | 8 | 13 | 1 | 0.621 | ||||||||||||||||
BX | 680 | 13 | 1 | 0.621 | ||||||||||||||||
BX | 18 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 12 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 9 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 118 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 90 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 401 | 14 | 1 | 0.621 | ||||||||||||||||
BX | 73 | 15 | 1 | 0.621 | ||||||||||||||||
BX | 58 | 15 | 1 | 0.621 | ||||||||||||||||
Direct Count | 153 | 143 | 151 | 150 | 87 | 111 | 96 | 86 | 32 | 92 | 115 | 161 | 161 | 161 | 153 | 161 | ||||
Carrier Frequencies (%) | 95 | 88.8 | 93.8 | 93.2 | 54 | 68.9 | 59.6 | 53.4 | 19.9 | 57.1 | 71.4 | 100 | 100 | 100 | 95 | 100 | ||||
Gene Frequencies (%) | 77.7 | 66.6 | 75.1 | 73.9 | 32.2 | 44.3 | 36.5 | 31.8 | 10.5 | 34.5 | 46.5 | 100 | 100 | 100 | 77.7 | 100 | ||||
Confidence Interval (%) | 73.2–82.2 | 61.4–71.7 | 70.4–79.8 | 69.1–78.7 | 27.1–37.3 | 38.8–49.7 | 31.2–41.7 | 26.7–36.8 | 7.1–13.8 | 29.3–39.7 | 41.1–52 | 100 | 100 | 100 | 73.2–82.2 | 100 |
Centromere | Telomere | Sample (2n = 322) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Haplotype | Nomenclature | 3DL3 | 2DS2 | 2DL2 | 2DL3 | 2DP1 | 2DL1 | 3DP1 | 2DL4 | 3DL1 | 3DS1 | 2DL5 | 2DS3 | 2DS5 | 2DS4 | 2DS1 | 3DL2 | n | Frequency (%) |
A1 | cA01~tA01 | 134 | 41.615 | ||||||||||||||||
B1 | cA01~tB01 2DS5 | 53 | 16.46 | ||||||||||||||||
B2 | cB02~tB01 | 35 | 10.87 | ||||||||||||||||
B3 | cB02~tA01 | 32 | 9.938 | ||||||||||||||||
B4 | cA01~tB05 | 19 | 5.901 | ||||||||||||||||
B5 | cB01~tA01 2DS3 | 16 | 4.969 | ||||||||||||||||
B6 | cB01~tB01 2DS3 | 8 | 2.484 |
KIR/Ligand | Present/Present n (%) | Present/Absent n (%) | Absent/Present n (%) | Absent/Absent n (%) | |
---|---|---|---|---|---|
Inhibition | 2DL1/C2 | 89 (55.279) | 64 (39.752) | 5 (3.106) | 3 (1.863) |
2DL2/C1 | 72 (44.720) | 15 (9.317) | 65 (40.373) | 9 (5.590) | |
2DL3/C1 | 121 (75.155) | 22 (13.665) | 16 (9.938) | 2 (1.242) | |
3DL1/Bw4 | 131 (81.367) | 19 (11.801) | 9 (5.590) | 2 (1.242) | |
3DL1/Bw4 (HLA-B) | 86 (53.416) | 64 (39.752) | 8 (4.969) | 3 (1.863) | |
3DL1/Bw4 (HLA-A) | 78 (48.447) | 72 (44.720) | 4 (2.485) | 7 (4.348) | |
3DL2/A3 A11 | 35 (21.739) | 126 (78.261) | 0 (0.00) | 0 (0.00) | |
3DL2/A3 | 26 (16.149) | 135 (83.851) | 0 (0.00) | 0 (0.00) | |
3DL2/A11 | 10 (6.211) | 151 (93.789) | 0 (0.00) | 0 (0.00) | |
Activation | 2DS1/C2 | 58 (36.025) | 38 (23.603) | 36 (22.360) | 29 (18.012) |
2DS2/C1 | 72 (44.720) | 14 (8.696) | 65 (40.373) | 10 (6.211) | |
2DS2/HLA-C*16 | 5 (3.106) | 81 (50.310) | 8 (4.969) | 67 (41.615) | |
2DS2/A11 | 3 (1.863) | 83 (51.553) | 7 (4.348) | 68 (42.236) | |
2DS4F/A3 A11 | 23 (14.286) | 93 (57.764) | 13 (8.074) | 32 (19.876) |
KIR + HLA Ligand Pairs | Number Individuals (%) | ||
---|---|---|---|
1 | KIR2DL1 + C2 | 2 (1.242) | 8 (4.969) |
KIR2DL2/3 + C1 | 4 (2.485) | ||
KIR3DL1 + Bw4 | 1 (0.621) | ||
KIR3DL2 + A3/11 | 1 (0.621) | ||
2 | KIR2DL1 + C2 KIR2DL2/3 + C1 | 10 (6.211) | 88 (54.658) |
KIR2DL1 + C2 KIR3DL1 + Bw4 | 15 (9.317) | ||
KIR2DL1 + C2 KIR3DL2 + A3/11 | 1 (0.621) | ||
KIR2DL2/3 + C1 KIR3DL1 + Bw4 | 58 (36.025) | ||
KIR2DL2/3 + C1 KIR3DL2 + A3/11 | 3 (1.863) | ||
KIR3DL1 + Bw4 KIR3DL2 + A3/11 | 1 (0.621) | ||
3 | KIR2DL1 + C2 KIR2DL2/3 + C1 KIR3DL1 + Bw4 | 36 (22.360) | 46 (28.572) |
KIR2DL1 + C2 KIR2DL2/3 + C1 KIR3DL2 + A3/11 | 2 (1.242) | ||
KIR2DL2/3 + C1 KIR3DL1 + Bw4 KIR3DL2 + A3/11 | 4 (2.485) | ||
KIR2DL1 + C2 KIR3DL1 + Bw4 KIR3DL2 + A3/11 | 4 (2.485) | ||
4 | KIR2DL1 + C2 KIR2DL2/3 + C1 KIR3DL1 + Bw4 KIR3DL2 + A3/11 | 19 (11.801) | 19 (11.801) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrillon, M.; Marin, N.D.; Karduss-Urueta, A.J.; Velasquez, S.Y.; Alvarez, C.M. Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population. Cells 2022, 11, 2776. https://doi.org/10.3390/cells11182776
Castrillon M, Marin ND, Karduss-Urueta AJ, Velasquez SY, Alvarez CM. Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population. Cells. 2022; 11(18):2776. https://doi.org/10.3390/cells11182776
Chicago/Turabian StyleCastrillon, Marlon, Nancy D. Marin, Amado J. Karduss-Urueta, Sonia Y. Velasquez, and Cristiam M. Alvarez. 2022. "Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population" Cells 11, no. 18: 2776. https://doi.org/10.3390/cells11182776
APA StyleCastrillon, M., Marin, N. D., Karduss-Urueta, A. J., Velasquez, S. Y., & Alvarez, C. M. (2022). Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population. Cells, 11(18), 2776. https://doi.org/10.3390/cells11182776