Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Gas Exchange and Chlorophyll a Fluorescence Analyses
2.3. Boron Concentration, Content and Distribution in Apple Organs
2.4. Chlorophyll and Carotenoid Determinations
2.5. Carbohydrate Determination
2.6. Statistical Analysis
3. Results
3.1. Plant Growth and B Allocation Patterns
3.2. Gas Exchange, Chlorophyll Fluorescence Parameters and Photosynthetic Pigments
3.3. Soluble Sugars
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Saleem, M.; Khanif, Y.; Fauziah, I.; Samsuri, A.; Hafeez, B. Importance of boron for agriculture productivity: A review. IRJAS 2011, 1, 293–300. [Google Scholar]
- Chatzissavvidis, C.; Therios, I.; Antonopoulou, C. Seasonal variation of nutrient concentration in two olive (Olea europaea L.) cultivars irrigated with high boron water. JHSB 2004, 79, 683–688. [Google Scholar]
- Pennisi, M.; Gonfiantini, R.; Grassi, S.; Squarci, P. The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Appl. Geochem. 2006, 21, 643–655. [Google Scholar] [CrossRef]
- Princi, M.P.; Lupini, A.; Araniti, F.; Longo, C.; Mauceri, A.; Sunseri, F.; Abenavoli, M.R. Boron toxicity and tolerance in plants: Recent advances and future perspectives. In Plant Metal Interaction; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–147. [Google Scholar]
- Kabay, N.; Güler, E.; Bryjak, M. Boron in seawater and methods for its separation—A review. Desalination 2010, 261, 212–217. [Google Scholar] [CrossRef]
- Landi, M.; Benelli, G. Protecting crop species from biotic and abiotic constraints in the era of global change: Are we ready for this challenge? Am. J. Agric. Biol. Sci. 2016, 11, 51–53. [Google Scholar] [CrossRef][Green Version]
- Ferreyra, R.E.; Aljaro, A.U.; Ruiz, R.S.; Rojas, L.P.; Oster, J. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agric. Water Manag. 1997, 34, 111–124. [Google Scholar] [CrossRef]
- Papadakis, I.; Dimassi, K.; Therios, I. Response of two citrus genotypes to six boron concentrations: Concentration and distribution of nutrients, total absorption and nutrient use efficiency. Aust. J. Agric. Res. 2003, 54, 571–580. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Dimassi, K.N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Boron toxicity in ‘Clementine’mandarin plants grafted on two rootstocks. Plant Sci. 2004, 166, 539–547. [Google Scholar] [CrossRef]
- Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Romero, L.; Ruiz, J.M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot. 2007, 100, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Remorini, D.; Pardossi, A.; Guidi, L. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J. Plant Res. 2013, 126, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Pardossi, A.; Remorini, D.; Guidi, L. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ. Exp. Bot. 2013, 85, 64–75. [Google Scholar] [CrossRef]
- Pardossi, A.; Romani, M.; Carmassi, G.; Guidi, L.; Landi, M.; Incrocci, L.; Maggini, R.; Puccinelli, M.; Vacca, W.; Ziliani, M. Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant Soil 2015, 395, 375–389. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Reyes-Díaz, M.; Guerrero, J.; Ondrasek, G. Physiological and nutritional responses in two highbush blueberry cultivars exposed to deficiency and excess of boron. J. Soil Sci. Plant Nutr. 2017, 17, 307–318. [Google Scholar] [CrossRef][Green Version]
- Sarafi, E.; Siomos, A.; Tsouvaltzis, P.; Therios, I.; Chatzissavvidis, C. The influence of Boron on pepper plants nutritional status and nutrient efficiency. J. Soil Sci. Plant Nutr. 2018, 18, 653–667. [Google Scholar] [CrossRef]
- Tanaka, M.; Fujiwara, T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflüg. Arch. 2008, 456, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.; Hunt, C.D. Diadenosine phosphates and S-adenosylmethionine: Novel boron binding biomolecules detected by capillary electrophoresis. BBA Gen. Subj. 2001, 1527, 20–30. [Google Scholar] [CrossRef]
- Brown, P.; Bellaloui, N.; Wimmer, M.; Bassil, E.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004, 27, 1405–1414. [Google Scholar] [CrossRef]
- Keren, R.; Bingham, F. Boron in water, soils and plants. In Advances in Soil Science; Springer: Berlin, Germany, 1958; pp. 229–276. [Google Scholar]
- Papadakis, I.E.; Tsiantas, P.I.; Tsaniklidis, G.; Landi, M.; Psychoyou, M.; Fasseas, C. Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J. Plant Physiol. 2018, 231, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Remorini, D.; Cotrozzi, L.; Giordani, T.; Lorenzini, G.; Massai, R.; Nali, C.; Natali, L.; Pellegrini, E.; Trivellini, A. The harsh life of an urban tree: The effect of a single pulse of ozone in salt-stressed Quercus ilex saplings. Tree Physiol. 2016, 37, 246–260. [Google Scholar]
- Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Commun. Soil Sci. Plant 1971, 2, 363–374. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4. 3.1–F4. 3.8. [Google Scholar] [CrossRef]
- El-Motaium, R.; Hu, H.; Brown, P.H. The relative tolerance of six Prunus rootstocks to boron and salinity. J. Am. Soc. Hortic. Sci. 1994, 119, 1169–1175. [Google Scholar] [CrossRef]
- Schopfer, P.; Lapierre, C.; Nolte, T. Light-controlled growth of the maize seedling mesocotyl: Mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiol. Plant 2001, 111, 83–92. [Google Scholar] [CrossRef]
- Cervilla, L.; Rosales, M.; Rubio-Wilhelmi, M.; Sánchez-Rodríguez, E.; Blasco, B.; Ríos, J.; Romero, L.; Ruiz, J. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci. 2009, 176, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Ghanati, F.; Morita, A.; Yokota, H. Deposition of suberin in roots of soybean induced by excess boron. Plant Sci. 2005, 168, 397–405. [Google Scholar] [CrossRef]
- Ghanati, F.; Morita, A.; Yokota, H. Induction of suberin and increase of lignin content by excess boron in tobacco cells. J. Plant Nutr. Soil Sci. 2002, 48, 357–364. [Google Scholar] [CrossRef]
- Hayes, J.E.; Reid, R.J. Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol. 2004, 136, 3376–3382. [Google Scholar] [CrossRef] [PubMed]
- Kalayci, M.; Alkan, A.; Cakmak, I.; Bayramoğlu, O.; Yilmaz, A.; Aydin, M.; Ozbek, V.; Ekiz, H.; Ozberisoy, F. Studies on differential response of wheat cultivars to boron toxicity. Euphytica 1998, 100, 123–129. [Google Scholar] [CrossRef]
- Sheng, O.; Zhou, G.; Wei, Q.; Peng, S.; Deng, X. Effects of excess boron on growth, gas exchange and boron status of four orange scion–rootstock combinations. J. Plant Nutr. Soil Sci. 2010, 173, 469–476. [Google Scholar] [CrossRef]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Tang, N.; Jiang, H.-X.; Yang, L.-T.; Li, Y.; Chen, L.-S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Farrant, J.M.; Pammenter, N.; Berjak, P. Seed development in relation to desiccation tolerance: A comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci. Res. 1993, 3, 1–13. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Degl’Innocenti, E.; Pardossi, A.; Guidi, L. Antioxidant and photosynthetic responses in plants under boron toxicity: A review. Am. J. Agric. Biol. Sci. 2012, 7, 255–270. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron: The essential element for vascular plants that never was. New Phytol. 2019, 221, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Kaur, N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 2005, 30, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J. Master regulators in plant glucose signaling networks. J. Plant Biol. 2014, 57, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Koch, K. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Biol. 1996, 47, 509–540. [Google Scholar] [CrossRef] [PubMed]
- Pego, J.V.; Kortstee, A.J.; Huijser, C.; Smeekens, S.C. Photosynthesis, sugars and the regulation of gene expression. J. Exp. Bot. 2000, 51, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14, S185–S205. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Qi, Y.-P.; Yang, L.-T.; Ye, X.; Jiang, H.-X.; Huang, J.-H.; Chen, L.-S. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biol. 2014, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Remorini, D.; Pardossi, A.; Guidi, L. Purple versus green-leafed Ocimum basilicum: Which differences occur with regard to photosynthesis under boron toxicity? J. Plant Nutr. Soil Sci. 2013, 176, 942–951. [Google Scholar] [CrossRef]
- Lovatt, C.J.; Bates, L.M. Early effects of excess boron on photosynthesis and growth of Cucurbita pepo. J. Exp. Bot. 1984, 35, 297–305. [Google Scholar] [CrossRef]
- Macho-Rivero, M.Á.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; Müller, M.; Munné-Bosch, S.; González-Fontes, A. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol. Plant. 2017, 160, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Macho-Rivero, M.A.; Herrera-Rodríguez, M.B.; Brejcha, R.; Schäffner, A.R.; Tanaka, N.; Fujiwara, T.; González-Fontes, A.; Camacho-Cristóbal, J.J. Boron toxicity reduces water transport from root to shoot in arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol. 2018, 59, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, T.E.; Therios, I.N.; Dimassi, K.N.; Bosabalidis, A.; Kofidis, G. Nutritional status, growth, CO2 assimilation and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 2002, 25, 1249–1261. [Google Scholar] [CrossRef]
- Lobo, A.K.M.; de Oliveira Martins, M.; Neto, M.C.L.; Machado, E.C.; Ribeiro, R.V.; Silveira, J.A.G. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J. Plant Physiol. 2015, 179, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cao, J. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. BBA Bioenerg. 1990, 1015, 180–188. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 2002, 29, 461–471. [Google Scholar] [CrossRef]
- Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 2008, 1, 201–247. [Google Scholar]
- Pfündel, E.; Klughammer, C.; Schreiber, U. Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl. Notes 2008, 1, 21–24. [Google Scholar]
Parameter | Plant Part | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Dry weight (DW) (g) | Leaves | 25.6 ± 0.48 | 25.68 ± 2.73 | n.s. |
Scion’s stem | 66.12 ± 3.33 | 64.06 ± 6.23 | n.s. | |
Rootstock’s stem | 74.15 ± 7.47 | 79.44 ± 5.29 | n.s. | |
Root | 9.61 ± 0.14 | 7.04 ± 0.71 | * | |
Entire plant | 175.47 ± 8.83 | 176.22 ± 8.04 | n.s. | |
Scion | 154.31 ± 9.02 | 159.12 ± 7.22 | n.s. | |
Rootstock | 83.76 ± 7.4 | 86.49 ± 4.88 | n.s. | |
Aboveground/underground plant part | 19.45 ± 1.27 | 26.13 ± 1.91 | * |
Parameter | Plant Part | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Boron concentration (μg g−1 DW) | Top leaves | 88.9 ± 5.42 | 441.24 ± 32.03 | *** |
Middle leaves | 67.12 ± 6.41 | 340.35 ± 35.8 | ** | |
Basal leaves | 47.1 ± 3.21 | 268.95 ± 13.41 | *** | |
Top stem | 59.77 ± 1.97 | 458.33 ± 44.12 | ** | |
Middle stem | 51.76 ± 2.94 | 382.72 ± 27.8 | *** | |
Basal stem | 35.09 ± 2.83 | 254.15 ± 22.76 | ** | |
Rootstock’s stem | 22.35 ± 1.59 | 142.04 ± 16.84 | ** | |
Root | 37.4 ± 2.89 | 222.14 ± 47.76 | * | |
Boron content (μg) | Leaves | 1781.68 ± 120.98 | 9239.48 ± 1686.3 | * |
Scion’s stem | 2527.93 ± 286.64 | 18301.05 ± 2815.04 | * | |
Rootstock’s stem | 1679.91 ± 265.22 | 11455.38 ± 2022.34 | * | |
Root | 359.08 ± 27.69 | 1500.05 ± 214.48 | * | |
Entire plant | 6348.59 ± 391.44 | 40495.96 ± 3024.11 | *** | |
Scion | 4309.61 ± 369.65 | 27540.54 ± 4154.56 | * | |
Rootstock | 2038.98 ± 291.55 | 12955.42 ± 2159.34 | * | |
Aboveground/underground plant part | 2.26 ± 0.35 | 2.39 ± 0.6 | n.s. |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top Leaves | A | 8.3 ± 0.22 | 4.84 ± 0.44 | *** |
gs | 0.07 ± 0 | 0.04 ± 0 | *** | |
Ci | 192.78 ± 8 | 190.59 ± 7.91 | n.s. | |
E | 1.58 ± 0.06 | 0.91 ± 0.09 | *** | |
A/gs | 112.86 ± 5.02 | 118.45 ± 5.05 | n.s. | |
A/Ci | 0.04 ± 0 | 0.03 ± 0 | *** | |
A/E | 5.27 ± 0.24 | 5.36 ± 0.2 | n.s. | |
Middle leaves | A | 10.74 ± 0.74 | 7.03 ± 0.37 | ** |
gs | 0.13 ± 0.02 | 0.06 ± 0.01 | * | |
Ci | 230.69 ± 13.18 | 187.68 ± 17.82 | n.s. | |
E | 2.56 ± 0.29 | 1.36 ± 0.16 | * | |
A/gs | 86.08 ± 8.87 | 117.63 ± 11.66 | n.s. | |
A/Ci | 0.05 ± 0 | 0.04 ± 0 | n.s. | |
A/E | 4.34 ± 0.36 | 5.39 ± 0.47 | n.s. | |
Basal leaves | A | 7.50 ± 0.56 | 7.09 ± 0.61 | n.s. |
gs | 0.08 ± 0.01 | 0.08 ± 0.01 | n.s. | |
Ci | 219.96 ± 16.38 | 230.81 ± 12.02 | n.s. | |
E | 1.73 ± 0.18 | 1.76 ± 0.21 | n.s. | |
A/gs | 96.48 ± 10.32 | 90 ± 7.87 | n.s. | |
A/Ci | 0.03 ± <0.001 | 0.03 ± < 0.001 | n.s. | |
A/E | 4.47 ± 0.44 | 4.13 ± 0.3 | n.s. |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top Leaves | [Chl a] (μg/cm2) | 46.13 ± 1 | 32.22 ± 3.03 | ** |
[Chl b] (μg/cm2) | 16.9 ± 0.66 | 11.79 ± 1.06 | ** | |
[Caroten] (μg/cm2) | 11.1 ± 0.28 | 8.13 ± 0.58 | ** | |
[Chl a] + [Chl b] (μg/cm2) | 63.03 ± 1.63 | 44.01 ± 4.06 | ** | |
[Chl a] (μg/mg dw) | 5.61 ± 0.13 | 3.99 ± 0.34 | ** | |
[Chl b] (μg/mg dw) | 2.05 ± 0.06 | 1.46 ± 0.12 | ** | |
[Caroten] (μg/mg dw) | 1.35 ± 0.03 | 1.01 ± 0.06 | ** | |
[Chl a] + [Chl b] (μg/mg dw) | 7.66 ± 0.19 | 5.45 ± 0.45 | ** | |
[Chl a]/[Chl b] | 2.74 ± 0.06 | 2.73 ± 0.07 | n.s. | |
Middle leaves | [Chl a] (μg/cm2) | 41.82 ± 5.9 | 48.17 ± 2.51 | n.s. |
[Chl b] (μg/cm2) | 21.74 ± 3.07 | 19.76 ± 1.41 | n.s. | |
[Caroten] (μg/cm2) | 11.13 ± 1.28 | 12.54 ± 0.67 | n.s. | |
[Chl a] + [Chl b] (μg/cm2) | 63.56 ± 3.65 | 67.93 ± 3.89 | n.s. | |
[Chl a] (μg/mg dw) | 4.59 ± 0.8 | 5.26 ± 0.23 | n.s. | |
[Chl b] (μg/mg dw) | 2.27 ± 0.22 | 2.15 ± 0.12 | n.s. | |
[Caroten] (μg/mg dw) | 1.21 ± 0.18 | 1.37 ± 0.07 | n.s. | |
[Chl a] + [Chl b] (μg/mg dw) | 6.86 ± 0.7 | 7.41 ± 0.33 | n.s. | |
[Chl a]/[Chl b] | 2.14 ± 0.39 | 2.45 ± 0.06 | n.s. | |
Basal leaves | [Chl a] (μg/cm2) | 43.41 ± 1.97 | 47.51 ± 2.07 | n.s. |
[Chl b] (μg/cm2) | 19.22 ± 0.96 | 20.14 ± 0.94 | n.s. | |
[Caroten] (μg/cm2) | 12.76 ± 0.60 | 13.21 ± 0.81 | n.s. | |
[Chl a] + [Chl b] (μg/cm2) | 62.63 ± 2.91 | 67.65 ± 3.01 | n.s. | |
[Chl a] (μg/mg dw) | 4.98 ± 0.24 | 5.01 ± 0.19 | n.s. | |
[Chl b] (μg/mg dw) | 2,20 ± 0,11 | 2.12 ± 0.08 | n.s. | |
[Caroten] (μg/mg dw) | 1.47 ± 0.08 | 1.39 ± 0.06 | n.s. | |
[Chl a] + [Chl b] (μg/mg dw) | 7.18 ± 0.35 | 7.13 ± 0.27 | n.s. | |
[Chl a]/[Chl b] | 2.26 ± 0.03 | 2.36 ± 0.01 | * |
Plant Part | Parameter | 25 μM B | 400 μM B | t-test |
---|---|---|---|---|
Top leaves | Sucrose | 3.11 ± 0.22 | 2.14 ± 0.09 | * |
Glucose | 0.18 ± 0.02 | 0.31 ± 0.01 | ** | |
Fructose | 0.41 ± 0.06 | 0.71 ± 0.03 | * | |
Sorbitol | 7.42 ± 0.55 | 7.95 ± 0.86 | n.s. | |
Total sugars | 11.13 ± 0.69 | 11.10 ± 0.82 | n.s. | |
Translocating sugars | 10.53 ± 0.75 | 10.08 ± 0.82 | n.s. | |
Non-translocating sugars | 0.60 ± 0.08 | 1.02 ± 0.03 | ** | |
Trans/Total | 0.95 ± 0.01 | 0.91 ± 0.01 | * | |
Non-trans/Total | 0.05 ± 0.01 | 0.09 ± 0.01 | * | |
Trans/Non-trans | 18.44 ± 3.40 | 9.92 ± 0.82 | n.s. | |
Sucr/Fru + Glu | 5.42 ± 0.96 | 2.10 ± 0.04 | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oikonomou, A.; Ladikou, E.-V.; Chatziperou, G.; Margaritopoulou, T.; Landi, M.; Sotiropoulos, T.; Araniti, F.; Papadakis, I.E. Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy 2019, 9, 731. https://doi.org/10.3390/agronomy9110731
Oikonomou A, Ladikou E-V, Chatziperou G, Margaritopoulou T, Landi M, Sotiropoulos T, Araniti F, Papadakis IE. Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy. 2019; 9(11):731. https://doi.org/10.3390/agronomy9110731
Chicago/Turabian StyleOikonomou, Alexia, Evangelia-Vasiliki Ladikou, Georgia Chatziperou, Theoni Margaritopoulou, Marco Landi, Thomas Sotiropoulos, Fabrizio Araniti, and Ioannis E. Papadakis. 2019. "Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants" Agronomy 9, no. 11: 731. https://doi.org/10.3390/agronomy9110731
APA StyleOikonomou, A., Ladikou, E.-V., Chatziperou, G., Margaritopoulou, T., Landi, M., Sotiropoulos, T., Araniti, F., & Papadakis, I. E. (2019). Boron Excess Imbalances Root/Shoot Allometry, Photosynthetic and Chlorophyll Fluorescence Parameters and Sugar Metabolism in Apple Plants. Agronomy, 9(11), 731. https://doi.org/10.3390/agronomy9110731