Genome-Wide Identification of the PLATZ Gene Family and Its Roles in Stress Responses in Flax (Linum usitatissimum L.) Based on the Telomere-to-Telomere Genome
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Identification of PLATZ Gene in Flax
2.3. Phylogeny, Chromosome Location, Conserved Domain and Conserved Motif of LuPLATZ Gene
2.4. Genome-Wide Replication and Collinear Analysis of LuPLATZ Gene
2.5. MiRNA Prediction and Cis-Acting Element Analysis
2.6. Analysis of Expression Pattern of LuPLATZ Gene Family
2.7. RNA Extraction and Fluorescence Quantitative PCR Analysis
2.8. Subcellular Localization of LuPLATZ14 and LuPLATZ21 Genes
2.9. Heterologous Expression of LuPLATZ14 and LuPLATZ21 Genes in the Saccharomyces cerevisiae Strain INVSc1
3. Results
3.1. Identification and Phylogenetic Analysis of PLATZ Gene Family in Flax
3.2. Analysis of Gene Structure and Conservative Motif of LuPLATZ
3.3. Chromosome Mapping and Collinearity Analysis of LuPLATZ Gene
3.4. Analysis of Cis-Acting Elements and MiRNA Prediction
3.5. Analysis of LuPLATZ Gene Expression Pattern Based on RNA-Seq Data
3.6. qRT-PCR Analysis of LuPLATZ Gene Expression in Flax Under Abiotic Stress
3.7. Subcellular Localization of LuPLATZ14 and LuPLATZ21 Genes
3.8. Drought Tolerance Assay of Yeast Transformants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Ji, C.; Li, Q.; Zhou, Y.; Wu, Y. Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex. BMC Plant Biol. 2018, 18, 221. [Google Scholar] [CrossRef]
- Berg, J.M.; Shi, Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
- Takatsuji, H. Zinc-finger transcription factors in plants. Cell. Mol. Life Sci. 1998, 54, 582–596. [Google Scholar] [CrossRef]
- Nagano, Y.; Furuhashi, H.; Inaba, T.; Sasaki, Y. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res. 2001, 29, 4097–4105. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhu, G.; Meng, Q.; Zeng, J.; He, X.; Liu, W. Comprehensive analysis of PLATZ family genes and their responses to abiotic stresses in Barley. BMC Plant Biol. 2024, 24, 982. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, S.; Zhang, Y.; Xu, L.; Luo, Y.; Yuan, Y.; Yang, Q.; Feng, B. Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol. 2022, 22, 160. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guan, Z.; Wu, S.; Zhang, J.; Lin, C.; Sun, Y.; Shen, M.; Zhang, C. Genome-Wide Identification and Salt Stress-Responsive Expression Analysis of the GmPLATZ Gene Family in Soybean (Glycine max L.). Plants 2025, 14, 2004. [Google Scholar] [CrossRef]
- Yang, T.; Xu, X.-T.; Tang, L.-J.; Wei, W.-T.; Zhao, Y.-Y.; Liu, J.-X.; Yao, X.-F.; Zhao, H.; Liu, C.-M.; Bai, A.N. Genome-Wide Study of Plant-Specific PLATZ Transcription Factors and Functional Analysis of OsPLATZ1 in Regulating Caryopsis Development of Rice (Oryza sativa L.). Plants 2025, 14, 151. [Google Scholar] [CrossRef]
- Wang, P.; Teng, H.; Qiao, D.; Liang, F.; Zhu, K.; Miao, M.; Hua, B. The Role of PLATZ6 in Raffinose Family Oligosaccharides Loading of Leaves via PLATZ Family Characterization in Cucumber. Plants 2024, 13, 2825. [Google Scholar] [CrossRef]
- Fan, B.; Ren, M.; Chen, G.; Zhou, X.; Cheng, G.; Yang, J.; Sun, H. Exploring the Roles of the Plant AT-Rich Sequence and Zinc-Binding (PLATZ) Gene Family in Tomato (Solanum lycopersicum L.) Under Abiotic Stresses. Int. J. Mol. Sci. 2025, 26, 1682. [Google Scholar] [CrossRef]
- Wai, A.H.; Rahman, M.M.; Waseem, M.; Cho, L.H.; Naing, A.H.; Jeon, J.S.; Lee, D.J.; Kim, C.K.; Chung, M.Y. Comprehensive Genome-Wide Analysis and Expression Pattern Profiling of PLATZ Gene Family Members in Solanum Lycopersicum L. under Multiple Abiotic Stresses. Plants 2022, 11, 3112. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.; Jun, S.E.; Park, S.; Timilsina, R.; Kwon, D.S.; Kim, Y.; Park, S.J.; Hwang, J.Y.; Nam, H.G.; et al. ORESARA15, a PLATZ transcription factor, mediates leaf growth and senescence in Arabidopsis. New Phytol. 2018, 220, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Guérin, C.; Behr, M.; Sait, J.; Mol, A.; El Jaziri, M.; Baucher, M. Evidence for poplar PtaPLATZ18 in the regulation of plant growth and vascular tissues development. Front. Plant Sci. 2023, 14, 1302536. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, J.; Ye, J.; Zheng, X.; Xiang, X.; Li, C.; Fu, M.; Wang, Q.; Zhang, Z.; Wu, Y. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III. Plant Cell 2017, 29, 2661–2675. [Google Scholar] [CrossRef]
- Wang, A.; Hou, Q.; Si, L.; Huang, X.; Luo, J.; Lu, D.; Zhu, J.; Shangguan, Y.; Miao, J.; Xie, Y.; et al. The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice. Plant Physiol. 2019, 180, 2077–2090. [Google Scholar] [CrossRef]
- Gonzalez-Morales, S.I.; Chavez-Montes, R.A.; Hayano-Kanashiro, C.; Alejo-Jacuinde, G.; Rico-Cambrón, T.Y.; de Folter, S.; Herrera-Estrella, L. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2016, 113, E5232–E5241. [Google Scholar] [CrossRef]
- Dong, T.; Yin, X.; Wang, H.; Lu, P.; Liu, X.; Gong, C.; Wu, Y. ABA-INDUCED expression 1 is involved in ABA-inhibited primary root elongation via modulating ROS homeostasis in Arabidopsis. Plant Sci. 2021, 304, 110821. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, R.; Huo, Y.; Liu, S.; Yang, G.; Huang, J.; Zheng, C.; Wu, C. Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways. BMC Plant Biol. 2018, 18, 218. [Google Scholar] [CrossRef]
- Liu, S.; Yang, R.; Liu, M.; Zhang, S.; Yan, K.; Yang, G.; Huang, J.; Zheng, C.; Wu, C. PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes. J. Exp. Bot. 2020, 71, 5589–5602. [Google Scholar] [CrossRef]
- Naish, M.; Alonge, M.; Włodzimierz, P.; Tock, A.J.; Abramson, B.W.; Schmücker, A.; Mandáková, T.; Jamge, B.; Lambing, C.; Kuo, P.; et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 2021, 374, eabi7489. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, J.; Chen, H.; Zhang, Z.; Wu, J.; Wang, X. A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. Plant Biotechnol. J. 2023, 21, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qi, Y.; Wang, L.; Wang, L.; Yan, X.; Dang, Z.; Li, W.; Zhao, W.; Pei, X.; Li, X.; et al. Genomic Comparison and Population Diversity Analysis Provide Insights into the Domestication and Improvement of Flax. iScience 2020, 23, 100967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hobson, N.; Galindo, L.; Zhu, S.; Shi, D.; McDill, J.; Yang, L.; Hawkins, S.; Neutelings, G.; Datla, R.; et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012, 72, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, H.; Wang, F.; Li, J.; Wang, Y.; Zhao, Q.; Wang, Y.; Wang, X.; Lei, X.; Sun, R.; et al. Telomere to telomere flax (Linum usitatissimum L.) genome assembly unlocks insights beyond fatty acid metabolism pathways. Hortic. Res. 2025, 12, uhaf127. [Google Scholar] [CrossRef]
- Huis, R.; Hawkins, S.; Neutelings, G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 2010, 10, 71. [Google Scholar] [CrossRef]
- Chytilová, M.; Mudroňová, D.; Nemcová, R.; Gancarčíková, S.; Buleca, V.; Koščová, J.; Tkáčiková, L. Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum—Biocenol LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Res. Vet. Sci. 2013, 95, 103–109. [Google Scholar] [CrossRef]
- Heller, K.; Sheng, Q.C.; Guan, F.; Alexopoulou, E.; Hua, L.S.; Wu, G.W.; Jankauskiene, Z.; Fu, W.Y. A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Ind. Crop Prod. 2015, 68, 24–31. [Google Scholar] [CrossRef]
- Santos, H.O.; Price, J.C.; Bueno, A.A. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020, 12, 3159. [Google Scholar] [CrossRef]
- Wang, N.; Qi, F.; Wang, F.; Lin, Y.; Xiaoyang, C.; Peng, Z.; Zhang, B.; Qi, X.; Deyholos, M.K.; Zhang, J. Evaluation of Differentially Expressed Genes in Leaves vs. Roots Subjected to Drought Stress in Flax (Linum usitatissimum L.). Int. J. Mol. Sci. 2023, 24, 12019. [Google Scholar] [CrossRef]
- Wang, N.; Lin, Y.; Qi, F.; Xiaoyang, C.; Peng, Z.; Yu, Y.; Liu, Y.; Zhang, J.; Qi, X.; Deyholos, M.K.; et al. Comprehensive Analysis of Differentially Expressed Genes and Epigenetic Modification-Related Expression Variation Induced by Saline Stress at Seedling Stage in Fiber and Oil Flax, Linum usitatissimum L. Plants 2022, 11, 2053. Plants 2022, 11, 2053. [Google Scholar] [CrossRef]
- Garcia-Hernandez, M.; Berardini, T.Z.; Chen, G.; Crist, D.; Doyle, A.; Huala, E.; Knee, E.; Lambrecht, M.; Miller, N.; Mueller, L.A.; et al. TAIR: A resource for integrated Arabidopsis data. Funct. Integr. Genom. 2002, 2, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Khaja, R.; MacDonald, J.R.; Zhang, J.; Scherer, S.W. Methods for identifying and mapping recent segmental and gene duplications in eukaryotic genomes. Methods Mol. Biol. 2006, 338, 9–20. [Google Scholar] [CrossRef]
- Melnikova, N.V.; Dmitriev, A.A.; Belenikin, M.S.; Koroban, N.V.; Speranskaya, A.S.; Krinitsina, A.A.; Krasnov, G.S.; Lakunina, V.A.; Snezhkina, A.V.; Sadritdinova, A.F.; et al. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions. Front. Plant Sci. 2016, 7, 399. [Google Scholar] [CrossRef]
- Carpenter, C.M.; Frank, D.N.; Williamson, K.; Arbet, J.; Wagner, B.D.; Kechris, K.; Kroehl, M.E. tidyMicro: A pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinform. 2021, 22, 41. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Lu, J.; Xiaoyang, C.; Li, J.; Wu, H.; Wang, Y.; Di, P.; Deyholos, M.K.; Zhang, J. Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. Plant Cell Environ. 2025, 48, 2221–2239. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, T.; Wang, Z.; Zhang, F.; Li, N.; Jiang, W. Genome-Wide Identification and Expression Analysis of the PLATZ Transcription Factor in Tomato. Plants 2023, 12, 2632. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon-intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Zhang, X.; Lan, Y.; Wang, L.; Liu, H.; Jiang, N.; He, W.; Yan, H.; Wu, M.; Xiang, Y. Whole-genome identification and multiple abiotic stresses expression pattern profiling analysis of PLATZ transcription factor family members in Pecan (Carya illinoensis). Int. J. Biol. Macromol. 2023, 248, 125959. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Li, J.; Tang, H.; Paterson, A.H. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 2014, 26, 2792–2802. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.; Donoghue, P. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Weirauch, M.T.; Yang, A.; Albu, M.; Cote, A.G.; Montenegro-Montero, A.; Drewe, P.; Najafabadi, H.S.; Lambert, S.A.; Mann, I.; Cook, K.; et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 2014, 158, 1431–1443. [Google Scholar] [CrossRef]
- Dhatterwal, P.; Mehrotra, S.; Miller, A.J.; Mehrotra, R. Promoter profiling of Arabidopsis amino acid transporters: Clues for improving crops. Plant Mol. Biol. 2021, 107, 451–475. [Google Scholar] [CrossRef]
- Osakabe, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.P. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol. 2014, 202, 35–49. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Nagpal, P.; Villarino, G.; Trinidad, B.; Bird, L.; Huang, Y.; Reed, J.W. miR167 limits anther growth to potentiate anther dehiscence. Development 2019, 146, dev.174375. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Di, D.; Wu, L.; Yang, J.; Lu, Y.; Shi, W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int. J. Mol. Sci. 2022, 23, 510. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wang, J.; Wang, W.; Xu, L.A. ARF family identification in Tamarix chinensis reveals the salt responsive expression of TcARF6 targeted by miR167. PeerJ 2020, 8, e8829. [Google Scholar] [CrossRef]
- Gu, F.; Ren, Y.; Manzoor, M.A.; Wang, T.; Huang, R.; Chen, N.; Song, C.; Zhang, Y. Plant AT-rich protein and zinc-binding protein (PLATZ) family in Dendrobium huoshanense: Identification, evolution and expression analysis. BMC Plant Biol. 2024, 24, 1276. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Lv, G.; Wang, Z.; Wang, L.; Yan, B.; Shang, W.; Wang, X.; Ma, Z.; Zheng, W. Genome-Wide Analysis of the PLATZ Gene Family in Oryza Genus: Evolution, Expression During Inflorescence Development and Stress Responses. Agronomy 2025, 15, 117. [Google Scholar] [CrossRef]
- Cai, K.; Song, X.; Yue, W.; Liu, L.; Ge, F.; Wang, J. Identification and Functional Characterization of Abiotic Stress Tolerance-Related PLATZ Transcription Factor Family in Barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2024, 25, 10191. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Ji, Z.; Lu, J.; Zhang, L.; Li, C.; Huang, J.; Yang, G.; Yan, K.; Zhang, S.; et al. Regulation of drought tolerance in Arabidopsis involves the PLATZ4-mediated transcriptional repression of plasma membrane aquaporin PIP2;8. Plant J. 2023, 115, 434–451. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, L.; Wei, J.; Wang, Y.; Chen, J.; Zhou, Y.; Chen, M.; Wang, F.; Ma, Y.; Xu, Z. The soybean PLATZ transcription factor GmPLATZ17 suppresses drought tolerance by interfering with stress-associated gene regulation of GmDREB5. Crop. J. 2022, 10, 1014–1025. [Google Scholar] [CrossRef]
- Zhang, K.; Lan, Y.; Wu, M.; Wang, L.; Liu, H.; Xiang, Y. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 2022, 186, 121–134. [Google Scholar] [CrossRef]
Gene | Gene ID in Genome | Number of Amino Acids | Molecular Weight (KDa) | PI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity (GRAVY) | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
LuPLATZ1 | LusiChr1G187770.1 | 197 | 21.27 | 8.01 | 47.65 | 74.21 | −0.145 | Nuclear |
LuPLATZ2 | LusiChr1G194980.1 | 215 | 24.13 | 9.11 | 61.43 | 62.14 | −0.502 | Nuclear |
LuPLATZ3 | LusiChr1G203360.1 | 217 | 24.4 | 8.99 | 62.81 | 64.24 | −0.499 | Nuclear |
LuPLATZ4 | LusiChr1G209970.1 | 124 | 13.19 | 9.08 | 46.13 | 75.4 | −0.002 | Nuclear |
LuPLATZ5 | LusiChr2G076260.1 | 277 | 31.87 | 8.28 | 51.57 | 61.16 | −0.711 | Nuclear |
LuPLATZ6 | LusiChr2G088000.1 | 277 | 30.92 | 9.59 | 57.96 | 66.9 | −0.416 | Nuclear |
LuPLATZ7 | LusiChr3G370300.1 | 286 | 32.81 | 8.13 | 48.57 | 62.97 | −0.714 | Nuclear |
LuPLATZ8 | LusiChr4G319920.1 | 263 | 29.16 | 8.39 | 67.7 | 58.33 | −0.501 | Nuclear |
LuPLATZ9 | LusiChr5G385480.1 | 271 | 30.41 | 7.84 | 51.58 | 65.06 | −0.543 | Nuclear |
LuPLATZ10 | LusiChr6G235470.1 | 227 | 24.64 | 9.56 | 49.13 | 75.99 | −0.204 | Nuclear |
LuPLATZ11 | LusiChr7G269670.1 | 249 | 27.90 | 8.37 | 59.6 | 75.98 | −0.25 | Nuclear |
LuPLATZ12 | LusiChr7G276620.1 | 547 | 61.67 | 10.24 | 85.33 | 49.01 | −1.045 | Nuclear |
LuPLATZ13 | LusiChr8G043760.1 | 264 | 29.76 | 8.97 | 53.31 | 69.73 | −0.418 | Nuclear |
LuPLATZ14 | LusiChr8G058360.1 | 326 | 36.27 | 8.61 | 51.75 | 66.41 | −0.601 | Nuclear |
LuPLATZ15 | LusiChr9G100100.1 | 258 | 28.91 | 6.6 | 59.68 | 69.19 | −0.489 | Nuclear |
LuPLATZ16 | LusiChr9G112840.1 | 244 | 27.37 | 8.83 | 62.28 | 74.34 | −0.273 | Nuclear |
LuPLATZ17 | LusiChr10G125160.1 | 257 | 29.23 | 9.06 | 58.64 | 66.34 | −0.651 | Nuclear |
LuPLATZ18 | LusiChr10G134580.1 | 258 | 28.88 | 8.5 | 58.04 | 68.8 | −0.495 | Nuclear |
LuPLATZ19 | LusiChr11G290390.1 | 316 | 36.35 | 9.63 | 50.88 | 68.04 | −0.553 | Nuclear |
LuPLATZ20 | LusiChr12G460550.1 | 226 | 25.22 | 8.52 | 84.03 | 59.51 | −0.7 | Nuclear |
LuPLATZ21 | LusiChr13G417460.1 | 246 | 27.42 | 8.72 | 59.1 | 71.75 | −0.393 | Nuclear |
LuPLATZ22 | LusiChr13G419590.1 | 244 | 27.75 | 9.23 | 53.06 | 57.5 | −0.746 | Nuclear |
LuPLATZ23 | LusiChr13G431690.1 | 270 | 29.84 | 7.93 | 66.66 | 59.33 | −0.494 | Nuclear |
LuPLATZ24 | LusiChr14G023030.1 | 233 | 26.28 | 9.01 | 53.58 | 62.27 | −0.597 | Nuclear |
LuPLATZ25 | LusiChr15G164250.1 | 245 | 27.21 | 9.12 | 57.91 | 67.27 | −0.456 | Nuclear |
LuPLATZ26 | LusiChr15G166600.1 | 245 | 27.81 | 9.32 | 55.2 | 60.04 | −0.753 | Nuclear |
LuPLATZ27 | LusiChr15G184210.1 | 285 | 31.56 | 9.46 | 59.92 | 67.82 | −0.381 | Nuclear |
Duplicated Gene Pairs | Non Synonymous (Ka) | Synonymous (Ks) | Ka/Ks |
---|---|---|---|
LuPLATZ1&LuPLATZ2 | 0.0103 | 0.104 | 0.099 |
LuPLATZ2&LuPLATZ3 | 0.027 | 0.067 | 0.408 |
LuPLATZ2&LuPLATZ20 | 0.148 | 0.941 | 0.158 |
LuPLATZ3&LuPLATZ20 | 0.189 | 0.913 | 0.207 |
LuPLATZ2&LusiChr14G009600.1 | 0.488 | 1.161 | 0.421 |
LuPLATZ3&LusiChr14G009600.1 | 0.432 | 0.980 | 0.441 |
LuPLATZ3&LuPLATZ10 | 0.394 | 3.448 | 0.114 |
LusiChr1G209960.1&LuPLATZ10 | 0.245 | 0.336 | 0.731 |
LuPLATZ17&LuPLATZ21 | 0.124 | 1.142 | 0.108 |
LuPLATZ17&LuPLATZ25 | 0.121 | 1.0738 | 0.112 |
LuPLATZ18&LuPLATZ9 | 0.301 | 1.248 | 0.241 |
LuPLATZ17&LuPLATZ12 | 0.0439 | 0.235 | 0.186 |
LuPLATZ18&LuPLATZ14 | 0.252 | 1.201 | 0.210 |
LuPLATZ18&LuPLATZ15 | 0.025 | 0.077 | 0.329 |
LuPLATZ19&LuPLATZ22 | 0.135 | 0.988 | 0.137 |
LuPLATZ19&LuPLATZ24 | 0.0281 | 0.113 | 0.248 |
LuPLATZ19&LuPLATZ26 | 0.151 | 0.901 | 0.167 |
LuPLATZ22&LuPLATZ24 | 0.142 | 1.056 | 0.134 |
LuPLATZ21&LuPLATZ25 | 0.034 | 0.174 | 0.196 |
LuPLATZ22&LuPLATZ26 | 0.014 | 0.158 | 0.089 |
LuPLATZ23&LuPLATZ8 | 0.016 | 0.188 | 0.087 |
LuPLATZ21&LuPLATZ12 | 0.125 | 1.102 | 0.113 |
LuPLATZ24&LuPLATZ26 | 0.162 | 0.934 | 0.173 |
LuPLATZ27&LuPLATZ6 | 0.014 | 0.118 | 0.125 |
LuPLATZ25&LuPLATZ12 | 0.119 | 1.025 | 0.116 |
LuPLATZ5&LuPLATZ7 | 0.022 | 0.205 | 0.110 |
LuPLATZ7&LusiChr5G398470.1 | 0.552 | 2.559 | 0.215 |
LuPLATZ7&LuPLATZ13 | 0.229 | 0.9002 | 0.255 |
LuPLATZ9&LuPLATZ14 | 0.069 | 0.255 | 0.270 |
LusiChr5G398470.1&LuPLATZ13 | 0.263 | 0.575 | 0.457 |
LuPLATZ9&LuPLATZ15 | 0.294 | 1.271 | 0.232 |
LuPLAT11&LuPLATZ16 | 0.025 | 0.124 | 0.202 |
LuPLAT14&LuPLATZ15 | 0.246 | 1.304 | 0.188 |
MiRNA | Target | Expectation | MiRNA Length | Target_Start | Target_End | Inhibition | Multiplicity |
---|---|---|---|---|---|---|---|
lus-miR408a | LuPLATZ18 | 4.5 | 1 | 21 | 325 | 345 | Translation |
lus-miR408a | LuPLATZ15 | 4.5 | 1 | 21 | 325 | 345 | Translation |
lus-miR167a/b/c/d/e/f/g/h/i | LuPLATZ1 | 5 | 1 | 21 | 386 | 406 | Cleavage |
lus-miR167a/b/c/d/e/f/g/h/i | LuPLATZ4 | 5 | 1 | 21 | 257 | 277 | Translation |
lus-miR408a | LuPLATZ9 | 5 | 1 | 21 | 406 | 426 | Translation |
lus-miR530a/b | LuPLATZ12 | 5 | 1 | 20 | 101 | 120 | Cleavage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Wu, H.; Wang, H.; Li, J.; Zang, Z.; Wu, G.; Zhang, J. Genome-Wide Identification of the PLATZ Gene Family and Its Roles in Stress Responses in Flax (Linum usitatissimum L.) Based on the Telomere-to-Telomere Genome. Agronomy 2025, 15, 2233. https://doi.org/10.3390/agronomy15092233
Lu J, Wu H, Wang H, Li J, Zang Z, Wu G, Zhang J. Genome-Wide Identification of the PLATZ Gene Family and Its Roles in Stress Responses in Flax (Linum usitatissimum L.) Based on the Telomere-to-Telomere Genome. Agronomy. 2025; 15(9):2233. https://doi.org/10.3390/agronomy15092233
Chicago/Turabian StyleLu, Jianyu, Hanlu Wu, Hang Wang, Jinxi Li, Zhenyuan Zang, Guangwen Wu, and Jian Zhang. 2025. "Genome-Wide Identification of the PLATZ Gene Family and Its Roles in Stress Responses in Flax (Linum usitatissimum L.) Based on the Telomere-to-Telomere Genome" Agronomy 15, no. 9: 2233. https://doi.org/10.3390/agronomy15092233
APA StyleLu, J., Wu, H., Wang, H., Li, J., Zang, Z., Wu, G., & Zhang, J. (2025). Genome-Wide Identification of the PLATZ Gene Family and Its Roles in Stress Responses in Flax (Linum usitatissimum L.) Based on the Telomere-to-Telomere Genome. Agronomy, 15(9), 2233. https://doi.org/10.3390/agronomy15092233