Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Embryogenic Callus Acquisition
2.2. Establishment of Suspension Culture System
2.3. Exploration of Protoplast Separation Conditions
2.4. Purification of Protoplasts
2.5. Protoplast Yield and Viability Assessment
2.6. Protoplast Fusion
2.7. Data Processing and Analysis
3. Results
3.1. Establishment of Embryonic Suspension Cell Lines
3.2. Study on Protoplast Separation Enzyme Concentration in Suspended Cell Lines
3.3. Studies on Other Factors in Protoplast Separation of Suspended Cell Lines
3.4. Protoplast Purification
3.5. PEG-Induced Fusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | embryonic callus |
MS | Murashige and Skoog |
6-BA | 6-benzyleaminopurine |
NAA | 1-naphthaleneacetic acid |
2,4-D | 2,4-Dichlorophenoxyacetic acid |
References
- Fan, X.Y.; Guo, S.J.; Li, Y.H.; Jiang, X.B. Study on correlation between browning degree of chestnut fruit and total phenols and flavonoids. J. Nanjing For. Univ. 2023, 47, 159–166. [Google Scholar]
- Hou, Y.Y.; Guo, S.J. Comparative Analysis of Photosynthetic Traits, Yield, and Fruit Quality Among Different Chestnut Cultivars. Agronomy 2024, 14, 2635. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, X.H.; Ge, J.Y.; Chu, S.H.; Liu, Y.; Qin, L.; Xing, Y. Identification of PAT gene family members and analysis of their response to different stresses in Chinese chestnut. J. Fruit. Sci. 2024, 41, 847–860. [Google Scholar]
- Zhang, Y.H.; Liu, L.; Liang, W.J. The Chinese Fruit Tree: Chestnut Hazelnut Roll; China Forestry Publishing House: Beijing, China, 2005. [Google Scholar]
- Liu, C.L.; Guo, S.J. Suitability Analysis and Distribution Prediction of Castanea mollissima under Climate Change. Sci. Silvae Sin. 2024, 60, 109–118. [Google Scholar]
- Liu, D.L.; Lv, P.H.; Peng, S.B.; Yang, Y.; He, J.L. Research on callus induction and explant browning of chestnut (Castanea mollissima Bl.). J. Cent. South. Univ. For. Technol. 2016, 36, 26–30. [Google Scholar]
- Sun, X.B.; Guo, S.J. Establishment and infl uencing factors of micropropagation system in mature Castanea mollissima. J. Cent. South. Univ. For. Technol. 2015, 35, 51–55. [Google Scholar]
- Gao, Y.; Sun, J.; Sun, Z.; Xing, Y.; Zhang, Q.; Fang, K.; Cao, Q.; Qin, L. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume). J. Integr. Agric. 2020, 19, 1033–1043. [Google Scholar] [CrossRef]
- Mehrcedeh, T.; Seyed, M.H.N.; Hamid, J.; Dariush, B. Plant regeneration through indirect organogenesis of chestnut Castanea sativa Mill. Afr. J. Biotechnol. 2013, 12, 7063–7069. [Google Scholar]
- Guo, S.J.; Sun, X.B.; Qin, T.T.; Liu, Z.M. Establishment and Optimization of in vitro Regeneration System of Mature Embryo of Castanea mollissima. J. Northwest For. Univ. 2015, 30, 89–93. [Google Scholar]
- Xu, C.; Cheng, S.S.; Wang, J.J.; Qin, L.; Cao, Q.Q. Establishment and optimization of efficient micropropagation system in Castanea mollissima. J. Beijing Univ. Agric. 2013, 28, 6–9. [Google Scholar]
- Su, D.M.; Luo, L.H.; Yang, D.H. Research on Callus Induction of Chinese Chestnut. Nonwood For. Res. 2004, 22, 17–19. [Google Scholar]
- Yang, G.C.; Lu, Z.G.; Theophilus, M.A.; Paul, E.R. In Vitro Callus Induction and Shoot Initiation of American Chestnut (Castanea dentata). J. Jilin Agric. Univ. 2008, 30, 466–471. [Google Scholar]
- Mehmet, S.; Hatice, D. Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill.). Vitr. Cell. Dev. Biol. Plant. 2014, 50, 58–68. [Google Scholar]
- Du, J.J. Construction of the Primary Tissuecultivation System and Physiologicalanalysis of Explant Development in Chinese Chestnut. Master’s Thesis, Hebei Normal University of Science and Technology, Qinhuangdao, China, 2023. [Google Scholar]
- Sun, Z.L.; Liu, B.; Li, X.W.; Tian, Y.Z.; Zhang, Q.; Cao, Q.Q. Functional research of transcription factor CmHAT1 regulating the development ofsomatic embryo in Castanea mollissima. J. Beijing For. Univ. 2024, 46, 73–81. [Google Scholar]
- Li, X.W.; Sun, Z.L.; Gao, Y.R.; Ge, J.Y.; Tian, Y.Z.; Liu, B.; Sun, S.K.; Fang, K.F.; Qin, L.; Cao, Q.Q. A strategy for establishing an efcient somatic embryo regeneration system in Castanea mollissima Blume. Plant Cell Tissue Organ. Cult. 2022, 150, 299–312. [Google Scholar] [CrossRef]
- Ahmadpoor, F.; Zare, N.; Asghari, R.; Mosadeg, S.P. The effect of plant growth regulators on the antioxidant enzyme activity and secondary metabolite production in the cell suspension cultures of Melia azedarach L. J. Hortic. Sci. Biotechnol. 2023, 98, 662–677. [Google Scholar] [CrossRef]
- Dom, D.A.; Su, S.P.; Faisal, S.E.; Richard, T.J.; Zhang, X. Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of Nitraria tangutorum. Plants 2022, 11, 2559. [Google Scholar] [CrossRef]
- Li, Y.K.; Peng, S.N.; Zhang, J.Y.; Xiao, C.; Zhao, R.; Miao, Y.H.; Liu, D.H. Establishment of cell suspension culture and genetic transformation systems for production of bioactive metabolites of medicinal plant Artemisia argyi Levl. et Vant. Plant Cell Tissue Organ. Cult. 2025, 161, 12. [Google Scholar] [CrossRef]
- Wilson, H.M.; Street, H.E. The growth, anatomy and morphogenetic potential of callus and cell suspension cultures of Hevea brasiliensis. Ann. Bot. 1975, 39, 671–682. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, M.R.; Chen, D.M.; Xu, M. A study on cell suspension culture and somatic embryogenesis of Populus simonii. J. Nanjing For. Univ. 1991, 9, 31–37. [Google Scholar]
- He, X.Y.; Xu, L.J.; Xu, X.S.; Yi, D.D.; Hou, S.L.; Yuan, D.Y.; Xiao, S.X. Embryogenic callus induction, proliferation, protoplast isolation, and PEG induced fusion in Camellia oleifera. Plant Cell Tissue Organ. Cult. 2024, 157, 75. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, Y.L.; Zhou, Q.Y.; Zhao, Z. Isolation and Purification of Mesophyll Protoplasts from Ginkgo biloba L. Jpn. Mendel. Soc. 2020, 85, 27–32. [Google Scholar]
- Ahmed Mohamed, A.A.; Miao, M.; Pratsinakis Emmanouil, D.; Zhang, H.L.; Wang, W.; Yuan, Y.; Lu, M.L.; Lftikhar, J.; Yousef Ahmed, F.; Madesis, P.; et al. Protoplast Isolation, Fusion, Culture and Transformation in the Woody Plant Jasminum spp. Agriculture 2021, 11, 699. [Google Scholar] [CrossRef]
- Lai, Z.X.; Huang, Q.; Lin, X.L.; Lin, Y.L.; Chen, Y.T.; Lai, C.C.; Cai, Y.Q. Rapid establishment of embryogenic cell suspensions and plan regeneration via somatic embryogenesis in litchi. Chin. Agric. Sci. Bull. 2007, 10, 12–17. [Google Scholar]
- Fan, Q. Establishment of Grapevine Embryogenic Suspension System and Protoplast Isolation; Gansu Agricultural University: Lanzhou, China, 2018. [Google Scholar]
- Zhou, Z.J. Studies on Cell Suspension Culture and Protoplast Isolation of Zanthoxylum bungeanum; Northwest A & F University: Xianyang, China, 2016. [Google Scholar]
- Huang, Z. Studies on Suspension Cell Line Establishment and Protoplast Culture of Populus spp.; Beijing Forestry University: Beijing, China, 2015. [Google Scholar]
- Holmes, M. Somatic hybridization. Historical studies. Nat. Sci. 2018, 48, 1–23. [Google Scholar]
- Liu, S.W.; Xia, G.M. The place of asymmetric somatic hybridization in wheat breeding. Plant Cell Rep. 2014, 33, 595–603. [Google Scholar] [CrossRef]
- Omar, A.A.; Dutt, M.; Frederick, G.; Grosser, J.W. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement In Vitro Embryogenesis in Higher Plants. Methods Mol. Biol. 2016, 1359, 289–327. [Google Scholar]
- Wang, P.L.; Pu, Y.C.; Muhammad, A.A.; Kang, L.L.; Ye, Y.L.; Zhang, M.; Liang, C.Z.; Wei, Y.X.; Zhang, R.; Meng, Z.G. A Rapid and efficient method for isolation and Transformation of Cotton Callus Protoplast. Int. J. Mol. Sci. 2022, 23, 8368. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.H.; Fu, Y.Z.; Wang, Z.X.; Yang, X.B.; Li, W.J.; Zhang, C.H.; Zhang, D.M.; Li, J. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis. Plant Methods 2023, 19, 5. [Google Scholar] [CrossRef]
- Lei, R.; Qiao, W.J.; Hu, F.; Jiang, H.S.; Zhu, S.F. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability. MethodsX 2015, 2, 24–32. [Google Scholar] [CrossRef]
- Eyini, M.; Balaji, R.P.K. Isolation, Regeneration and PEG-Induced Fusion of Protoplasts of Pleurotus pulmonarius and Pleurotus florida. Mycobiology 2006, 34, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.D.; Shen, Y.B. Nitraria sibirica cell suspension culture:establishment, characterization and application. J. For. Res. 2017, 28, 935–942. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, L.Y.; Liu, Z.X.; Xia, Y.; Jing, D.L.; Guo, Q.G.; Liang, G.L.; He, Q. An Efficient System for Mesophyll Protoplast Isolation, Purification, and Transformation in Loquat: Studies on Fluorescent Marker Analysis and Subcellular Localization. Horticulturae 2025, 11, 391. [Google Scholar] [CrossRef]
- Le, L.L.; Xie, X.Y.; Zhang, W.T.; Ma, Y.W.; Wang, Y.H.; Fu, F.F.; Wang, G.B.; Cao, F.L.; Yang, X.M. Development and application of a Ginkgo biloba L. callus-derived protoplast transient expression system for exploring the roles of GbMYB11 and GbbHLH3 in flavonoid metabolism. Ind. Crops Prod. 2025, 226, 14. [Google Scholar] [CrossRef]
- Kim, K.; Shin, J.; Lee, J.D.; Kim, W.C. Establishment of efficient hypocotyl-derived protoplast isolation and its application in soybean (Glycine max [L.] Merr.). Front. Plant Sci. 2025, 16, 12. [Google Scholar] [CrossRef]
- Li, S.F.; Ye, T.W.; Xu, X.; Yuan, D.Y.; Xiao, S.X. Callus induction, suspension culture and protoplast isolation in Camellia oleifera. Sci. Hortic. 2021, 286, 100193. [Google Scholar] [CrossRef]
- Zhao, C.H.; Li, S.Y.; Du, C.J.; Gao, H.; Yang, D.; Fu, G.; Cui, H.T. Establishment of a Protoplasts-Based Transient Expression System in Banana (Musa spp.). Agronomy 2022, 12, 12. [Google Scholar] [CrossRef]
- María, V.; Javier, G.Z.; Catalina, A.G.; Víctor, M.J. Protoplast isolation from different explant sources in pitahaya (Selenicereus costaricensis, Cactaceae): Insights from roots, callus, and shoot tissues. Plant Cell Tissue Organ. Cult. 2025, 161, 11. [Google Scholar]
- Naing, A.H.; Adedeji OS Kim, C.K. Protoplast technology in ornamental plants: Current progress and potential applications on genetic improvement. Sci. Hortic. 2021, 283, 110043. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, D.; Tian, Y.B.; Tian, Z.; Duan, Q.; Ahmed, M.A.A.; Wang, L.H.; Wu, X.W. Efficient protoplast isolation and transient gene expression in dahlia (Dahlia sp.). Plant Biotechnol. Rep. 2025, 19, 243–257. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Chen, S.S.; Fang, K.F.; Xing, Y.; Cao, Q.Q.; Jiang, Y.C.; Zhang, Q.; Qin, L. Isolation and purification of protoplasts from chestnut hypocotyl. J. Fruit. Sci. 2013, 30, 994–997. [Google Scholar]
- Zhuang, M.D.; Li, T.; Xin, Q.Y.; Zhou, M.Y.; Zhang, H.X.; Ma, H.; Qian, J.; Zhang, Y.X.; Qi, B.X.; Xu, J.F. Establishment and application of callus induction and suspension culture system of pear anther. J. Fruit. Sci. 2023, 40, 577–587. [Google Scholar]
- Ferraz, R.; Casimiro, B.; Cordeiro, D.; Canhoto, J.; Correia, S. Mediated Transformation of Tamarillo (Solanum betaceum) Callus Cell Suspension Cultures: A Novel Platform for Biotechnological Applications. Plants 2025, 14, 1028. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, Z.; Khalili, F.A.; Ghasemi, M.; Mirjalili, M.H. Micropropagation, callus induction and cell culture establishment of Zataria multiflora (Lamiaceae): An efficient biotechnological platform for the production of rosmarinic acid. Ind. Crop. Prod. 2025, 226, 10. [Google Scholar] [CrossRef]
- Ou, Q.M.; Hou, Y.Q.; Bao, M.N.; Hu, D.; Chen, Y.L.; Yue, C.L. The Suspended Single Cell Culture and Embryogeny and Plant Regeneration of Pinellia ternata. China Biotechnol. 2012, 32, 39–49. [Google Scholar]
- Wang, H.; He, Y.F.; Xi, Y.; Feng, Y.; Sun, Y.H.; Li, Y. Protoplast Isolation and Fusion Induced by PEG with Callus of Robinia pseudoacacia L. J. Northeast. For. Univ. 2014, 42, 28–33. [Google Scholar]
- Hyun, H.K.; Aung, H.N.; Chang, K.K. Protoplast Isolation and Shoot Regeneration from Protoplast-Derived Callus of Petunia hybrida Cv. Mirage Rose. Biology 2020, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Widholm, J.M. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain. Technol. 1972, 47, 189–194. [Google Scholar] [CrossRef]
- Larkin, P.J. Purification and viability determinations of plant protoplasts. Planta 1976, 128, 213–216. [Google Scholar] [CrossRef]
- Tang, L.T.; Cai, Y.F.; Liu, Y.S.; Ma, Y.W.; Chen, Z.R. Suspension culture of rose cells. Mol. Plant Breed. 2023, 1–8. Available online: http://kns.cnki.net/kcms/detail/46.1068.S.20230301.1044.007.html (accessed on 25 June 2025).
- Liu, L.; Gu, Y.H.; Meng, K.; Wang, L.; Huang, W. Establishment of suspension cell cultures and cell growth characteristics of Xanthoceras sorbifolia. Sci. Silvae Sin. 2010, 46, 79–83. [Google Scholar]
- Wu, D.Y.; Wei, T.; Gao, D.D.; Zang, R.X.; Xu, H.W.; Guo, P.H. Application of plant protoplast culture technology in medicinal plants. Life Sci. Res. 2021, 25, 176–182. [Google Scholar]
- Li, Y.; Song, H.Y.; Wang, Z.; Wang, Y.Y.; Mao, W.M.; Wu, J.S.; Zhou, Y.; Li, P. Research progress of plant protoplast isolation and transient expression system. Plant Physiol. J. 2023, 59, 21–32. [Google Scholar]
- Jinger, W. Study on Cotton Protoplast Culture and Somatic Cell Hybridization. Doctoral Dissertation, Zhejiang University, Hangzhou, China, 2007. [Google Scholar]
- Zhao, W.F. Study on Protoplast Separation and Electrofusion of Jujube Tree. Master’s Thesis, South China Tropical Agricultural University, Haikou, China, 2005. [Google Scholar]
- Peng, Z.; Tong, H.R.; Liang, G.R.; Shi, Y.Q.; Yuan, L.Y. Protoplast Isolation and Fusion Induced by PEG with Leaves and Roots of Tea Plant (Camellia sinensis L. O. Kuntze). Acta Agron. Sin. 2018, 44, 463–470. [Google Scholar] [CrossRef]
- Li, C.X.L. Study on Protoplast Fusion of Panax Quinquefolium and Panax Notoginseng. Master’s Thesis, Jilin Agricultural Univercity, Changchun, China, 2022. [Google Scholar]
- Jiang, M. Research About the Isolation, Purification and Regeneration of Carnation ‘Master’. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2016. [Google Scholar]
- Zhang, Y.Q.; Wu, J.C.; He, M.; Liu, R.Y.; Zhu, X.Y. Establishment of efficient transient transformation method of Tieguanyin protoplasts. Acta Phytol. Sin. 2022, 57, 340–349. [Google Scholar]
- Li, C.X.L.; Wang, Y.P.; Wang, Q.; Lei, X.J. Research progress of plant protoplast regeneration mechanism. Mol. Plant Breed. 2021, 1–8. Available online: http://kns.cnki.net/kcms/detail/46.1068.s.20211223.1007.008.html (accessed on 25 June 2025).
Treatment | Factor | ||
---|---|---|---|
6-BA (mg∙L−1) | NAA (mg∙L−1) | 2,4-D (mg∙L−1) | |
1 | 1.0 | 0.1 | 0.1 |
2 | 1.0 | 0.2 | 0.3 |
3 | 1.0 | 0.3 | 0.5 |
4 | 1.5 | 0.1 | 0.3 |
5 | 1.5 | 0.2 | 0.5 |
6 | 1.5 | 0.3 | 0.1 |
7 | 2.0 | 0.1 | 0.5 |
8 | 2.0 | 0.2 | 0.1 |
9 | 2.0 | 0.3 | 0.3 |
Treatment | Enzymolysis Combination and Concentration |
---|---|
1 | 1.0% cellulase R-10 + 0.5% macerozyme R-10 |
2 | 1.0% cellulase R-10 + 1.0% macerozyme R-10 |
3 | 1.5% cellulase R-10 + 0.5% macerozyme R-10 |
4 | 1.5% cellulase R-10 + 1.0% macerozyme R-10 |
5 | 1.0% cellulase R-10 + 0.5% pectolase Y-23 |
6 | 1.0% cellulase R-10 + 1.0% pectolase Y-23 |
7 | 1.5% cellulase R-10 + 0.5% pectolase Y-23 |
8 | 1.5% cellulase R-10 + 1.0% pectolase Y-23 |
Treatment | Factor | Target | ||||
---|---|---|---|---|---|---|
6-BA (mg∙L−1) | NAA (mg∙L−1) | 2,4-D (mg∙L−1) | Cellular Viability(%) | Near-Round Cell Rate(%) | Suspension Station | |
1 | 1.0 | 0.1 | 0.1 | 18.84 ± 4.09 f | 16.92 ± 7.96 f | Browning, poor stability |
2 | 1.0 | 0.2 | 0.3 | 39.72 ± 7.35 e | 40.30 ± 3.46 e | Browning, poor stability |
3 | 1.0 | 0.3 | 0.5 | 50.53 ± 6.37 d | 52.38 ± 4.12 d | Milky white, general stability |
4 | 1.5 | 0.1 | 0.3 | 61.02 ± 4.89 c | 61.27 ± 4.89 cd | Milky white, general stability |
5 | 1.5 | 0.2 | 0.5 | 86.66 ± 1.13 a | 87.54 ± 2.72 a | Milky white, very stable |
6 | 1.5 | 0.3 | 0.1 | 71.91 ± 4.56 b | 72.34 ± 2.34 b | Milky white, very stable |
7 | 2.0 | 0.1 | 0.5 | 65.62 ± 7.30 bc | 66.30 ± 6.12 bc | Milky white, general stability |
8 | 2.0 | 0.2 | 0.1 | 59.50 ± 6.46 cd | 56.76 ± 6.89 cd | Milky white, general stability |
9 | 2.0 | 0.3 | 0.3 | 57.30 ± 4.58 cd | 54.62 ± 9.47 d | Milky white, general stability |
Target | Sources of Variation | SS | Degrees of Freedom | MS | F | F0.05 (2,2) |
---|---|---|---|---|---|---|
Cellular viability | 6-BA | 2107.683 | 2 | 1053.842 | 60.161 * | 19.00 |
NAA | 315.956 | 2 | 157.978 | 9.019 | ||
2,4-D | 315.956 | 2 | 157.978 | 9.019 | ||
Within-Group Error | 35.034 | 2 | 17.517 | |||
Near-round cell rate | 6-BA | 2107.548 | 2 | 1053.774 | 31.849 * | |
NAA | 316.778 | 2 | 158.389 | 4.787 | ||
2,4-D | 692.274 | 2 | 346.137 | 10.462 | ||
Within-Group Error | 66.172 | 2 | 33.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Guo, S.; Zheng, R. Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.). Agronomy 2025, 15, 1595. https://doi.org/10.3390/agronomy15071595
Zhang S, Guo S, Zheng R. Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.). Agronomy. 2025; 15(7):1595. https://doi.org/10.3390/agronomy15071595
Chicago/Turabian StyleZhang, Shiying, Sujuan Guo, and Ruijie Zheng. 2025. "Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)" Agronomy 15, no. 7: 1595. https://doi.org/10.3390/agronomy15071595
APA StyleZhang, S., Guo, S., & Zheng, R. (2025). Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.). Agronomy, 15(7), 1595. https://doi.org/10.3390/agronomy15071595