The Influence of Management on the Content of Macro- and Microelements in Plant Shoots of a Meadow Sward of an Arrhenatheretalia Plant Community
Abstract
1. Introduction
2. Materials and Methods
2.1. Filed Study
2.2. Laboratory Study
2.3. Statistical Analysis
3. Results
3.1. The Relationship Between Soil Macro- and Micro-Nutrient Concentrations, Topographic Factors and Physical Properties of Soil
3.2. Concentrations of Macro- and Micro-Nutrient in Above-Ground Plant Shoots and Meadow Sward
3.3. The Influence of Different Management Methods on the Concentration of Macro- and Micro-Nutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pullin, A.S.; Báldi, A.; Emre Can, O.; Dieterich, M.; Kati, V.; Livoreil, B.; Lövei, G.; Mihók, B.; Nevin, O.; Selva, N.; et al. Conservation focus on Europe: Major conservation policy issues that need to be informed by conservation science. Conserv. Biol. 2009, 23, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Feurdean, A.; Ruprecht, E.; Molnár, Z.; Hutchinson, S.M.; Hickler, T. Biodiversity-rich European grasslands: Ancient, forgotten ecosystems. Biol. Conserv. 2018, 228, 224–232. [Google Scholar] [CrossRef]
- Fumy, F.; Schwarz, C.; Fartmann, T. Intensity of grassland management and landscape heterogeneity determine species richness of insects in fragmented hay meadows. Glob. Ecol. Conserv. 2023, 47, e02672. [Google Scholar] [CrossRef]
- Török, P.; Janišová, M.; Kuzemko, A.; Rūsiņa, S.; Dajić Stevanović, Z. Grasslands, Their Threats and Management in Eastern Europe. In Grasslands of the World: Diversity, Management and Conservation; Squires, V.R., Dengler, J., Hua, L., Feng, H., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 64–88. [Google Scholar]
- Marini, L.; Scotton, M.; Klimek, S.; Isselstein, J.; Pecile, A. Effects of local factors on plant species richness and composition of Alpine meadows. Agric. Ecosyst. Environ. 2007, 119, 281–288. [Google Scholar] [CrossRef]
- Merunková, K.; Chytrý, M. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol. 2012, 213, 591–602. [Google Scholar] [CrossRef]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Pruchniewicz, D. Abandonment of traditionally managed mesic mountain meadows affects plant species composition and diversity. Basic Appl. Ecol. 2017, 20, 10–18. [Google Scholar] [CrossRef]
- Steffens, M.; Köelbl, A.; Totsche, K.U.; Köegel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 2008, 143, 63–72. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Song, X.; Chang, Q.; Frank, D.A.; Wang, D.; Li, J.; Lin, H.; Du, F. Towards a mechanistic understanding of the effect that different species of large grazers have on grassland soil N availability. J. Ecol. 2018, 106, 357–366. [Google Scholar] [CrossRef]
- Randall, K.; Brennan, F.; Clipson, N.; Creamer, R.; Griffiths, B.; Storey, S.; Doyle, E. Soil bacterial community structure and functional responses across a long-term mineral phosphorus (Pi) fertilisation gradient differ in grazed and cut grasslands. Appl. Soil Ecol. 2019, 138, 134–143. [Google Scholar] [CrossRef]
- Hou, D.; Guo, K.; Liu, C. Asymmetric effects of grazing intensity on macroelements and microelements in grassland soil and plants in Inner Mongolia Grazing alters nutrient dynamics of grasslands. Ecol. Evol. 2020, 10, 8916–8926. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, Y.; Wang, L.; Zhang, X.; Wang, J.; Wu, H.; Yan, Z.; Zhang, K.; Kang, X. Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: A hierarchical meta-analysis. Land Degrad. Dev. 2020, 31, 2369–2378. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zu, J.; Wei, W.; Xue, P.; Yan, H. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau. Soil Tillage Res. 2021, 206, 104822. [Google Scholar] [CrossRef]
- Köhler, B.; Ryser, P.; Güsewell, S.; Gigon, A. Nutrient availability and limitation in traditionally mown and in abandoned limestone grasslands: A bioassay experiment. Plant Soil 2001, 230, 323–332. [Google Scholar] [CrossRef]
- Whitehead, D.C. Nutrient Elements in Grassland: Soil-Plant-Animal Relationships; CABI Publishing: Wallingford, UK, 2000. [Google Scholar]
- Zistl-Schlingmann, M.; Kwatcho Kengdo, S.; Kiese, R.; Dannenmann, M. Management intensity controls nitrogen-use-efficiency and flows in grasslands-a 15N tracing experiment. Agronomy 2020, 10, 606. [Google Scholar] [CrossRef]
- Pruchniewicz, D.; Żołnierz, L. The influence of environmental factors and management methods on the vegetation of mesic grasslands in a central European mountain range. Flora 2014, 209, 687–692. [Google Scholar] [CrossRef]
- Allen, S.E. (Ed.) Chemical Analysis of Ecological Materials; Second Edition Completely Revised; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Radojević, M.; Bashkin, V. Plant analysis. In Practical Environmental Analysis; Radojevic, M., Bashkin, V., Eds.; Royal Society of Chemistry Publishing: Cambridge, UK, 2006; p. 457. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. Available online: https://www.statistica.com/en/software/tibco-data-science-/-tibco-statistica (accessed on 2 October 2024).
- Grzegorczyk, S.; Olszewska, M.; Alberski, J. Accumulation of copper, zinc, manganese and iron by selected species of grassland legumes and herbs. J. Elem. 2014, 19, 109–118. [Google Scholar] [CrossRef]
- He, N.P.; Zhang, Y.H.; Yu, Q.; Chen, Q.S.; Pan, Q.M.; Zhang, G.M.; Han, X.G. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere 2011, 2, 1–10. [Google Scholar] [CrossRef]
- Oliveira Filho, J.S.; Vieira, J.N.; Ribeiro da Silva, E.M.; Beserra de Oliveira, J.G.; Pereira, M.G.; Brasileiro, F.G. Assessing the effects of 17 years of grazing exclusion in degraded semi-arid soils: Evaluation of soil fertility, nutrients pools and stoichiometry. J. Arid Environ. 2019, 166, 1–10. [Google Scholar] [CrossRef]
- Reeder, J.D.; Schuman, G.E.; Morgan, J.A.; Lecain, D.R. Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ. Manag. 2004, 33, 485–495. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Niu, H.; Wu, J.; Wan, S.; Schnug, E.; Rogasik, J.; Fleckenstein, J.; Tang, Y. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol. Res. 2005, 20, 519–527. [Google Scholar] [CrossRef]
- Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Blüthgen, N.; Boch, S.; Müller, J.; Socher, S.A.; Prati, D.; Fischer, M. Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-useintensities among agricultural grasslands. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 287–295. [Google Scholar] [CrossRef]
- Du, C.; Gao, Y. Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland. Agric. Ecosyst. Environ. 2021, 308, 107256. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 2012, 49, 1204–1215. [Google Scholar] [CrossRef]
- Davies, R.O.; Jones, D.I.H.; Milton, W.E.J. Factors affecting the composition and nutritive value of herbage from fescue and Molinia areas. J. Agric. Sci. 1959, 53, 268–285. [Google Scholar] [CrossRef]
- Hou, S.L.; Yi, J.X.; Sistla, S.; Yang, J.J.; Sun, Y.; Li, Y.Y.; Lü, X.T.; Han, X.G. Long-term mowing did not alter the impacts of nitrogen deposition on litter quality in a temperate steppe. Ecol. Eng. 2017, 102, 404–410. [Google Scholar] [CrossRef]
- Pruchniewicz, D.; Lomba, Ȃ.; Żołnierz, L.; Dradrach, A.; Honrado, J.P. The impact of environmental factors and management on the fitness of Carlina acaulis subsp. caulescens (Lam.) Schübl. et G. Martens in mountain mesic meadows. Turk. J. Bot. 2023, 47, 586–594. [Google Scholar]
- Stockdale, C.R. Effects of season and time since defoliation on the nutritive characteristics of three irrigated perennial pasture species in northern Victoria. 2. Macro-minerals. Aust. J. Exp. Agric. 1999, 39, 567–577. [Google Scholar] [CrossRef]
- Wheeler, D.M. Investigation into the mechanisms causing lime responses in a grass/clover pasture on a clay loam soil. N. Z. J. Agric. Res. 1998, 41, 497–515. [Google Scholar] [CrossRef]
- Scott, D. Sustainability of New Zealand high-country pastures under contrasting development inputs. 1. Site and shoot nutrients. N. Z. J. Agric. Res. 1999, 42, 365–383. [Google Scholar] [CrossRef]
Altitude | Slope | Thickness | pH | MSWC | Org_Mat | Stone | Sand | Dust | Silt | N | |
---|---|---|---|---|---|---|---|---|---|---|---|
P | |||||||||||
K | −0.461 * | ||||||||||
Ca | 0.480 * | 0.788 *** | 0.505 * | ||||||||
Mg | −0.685 *** | 0.496 * | 0.532 * | ||||||||
Cu | |||||||||||
Fe | 0.448 * | 0.726 *** | 0.810 *** | 0.741 *** | −0.614 ** | −0.631 ** | 0.671 *** | ||||
Mn | −0.798 *** | −0.551 * | 0.509 * | −0.587 ** | |||||||
Zn | −0.673 *** |
Mowing | Mowing-Pasture | Fallowing | ||||
---|---|---|---|---|---|---|
x | SE | x | SE | x | SE | |
Phosphorus [mg·kg−1] | ||||||
Achillea millefolium | 8.02 | 1.09 | 7.07 | 0.89 | 8.67 | 1.65 |
Lotus corniculatus | 4.82 | 0.57 | 5.42 | 0.77 | 3.94 | 0.71 |
Plantago lanceolata | 6.16 | 0.79 | 7.69 | 0.93 | 5.76 | 1.19 |
Rumex acetosa | 8.29 | 1.21 | 8.64 | 2.00 | 7.00 | 0.74 |
Veronica chamaedrys | 6.07 | 0.71 | 5.87 | 0.75 | 6.29 | 0.92 |
Agrostis capillaris | 3.63 | 0.32 | 4.50 | 0.98 | 3.91 | 0.63 |
Festuca rubra | 3.76 | 0.63 | 3.20 | 0.27 | 2.95 | 0.33 |
Meadow sward | 4.26 | 0.40 | 3.99 | 0.32 | 4.48 | 1.09 |
Necromass | 3.96 | 0.40 | 3.06 | 0.54 | 3.75 | 0.23 |
Exchangeable forms | 14.23 | 1.40 | 14.53 | 1.08 | 27.99 | 9.04 |
Potassium [mg·kg−1] | ||||||
Achillea millefolium | 35,774.24 | 1730.84 | 39,484.14 | 4954.71 | 31,123.15 | 2521.99 |
Lotus corniculatus | 19,310.43 | 2054.75 | 17,468.04 | 2316.25 | 24,015.90 | 5374.46 |
Plantago lanceolata | 29,156.68 | 3050.82 | 28,940.65 | 1906.01 | 29,175.00 | 2318.02 |
Rumex acetosa | 41,730.88 | 3658.04 | 39,464.25 | 3016.31 | 29,076.20 | 5534.57 |
Veronica chamaedrys | 21,843.72 | 936.24 | 22,514.55 | 850.42 | 28,637.08 | 7405.31 |
Agrostis capillaris | 11,616.06 | 1119.60 | 13,118.21 | 1433.42 | 14,800.90 | 1232.31 |
Festuca rubra | 15,059.93 | 1976.29 | 16,752.67 | 2610.29 | 13,672.38 | 3561.87 |
Meadow sward | 21,378.34 | 2561.05 | 18,631.33 | 2123.12 | 18,290.75 | 2861.62 |
Necromass | 9935.78 | 1969.97 | 8488.17 | 1197.22 | 8898.00 | 647.14 |
Total content | 10,928.27 | 430.62 | 10,180.60 | 1005.88 | 10,699.83 | 1704.58 |
Exchangeable forms | 124.99 | 11.23 | 144.00 | 31.61 | 316.87 | 129.30 |
Magnesium [mg·kg−1] | ||||||
Achillea millefolium | 3415.97 | 305.78 | 3333.90 | 395.82 | 3406.22 | 265.74 |
Lotus corniculatus | 3375.01 | 396.88 | 5085.53 | 611.81 | 3925.85 | 730.80 |
Plantago lanceolata | 4498.00 | 641.62 | 3915.48 | 355.92 | 4491.92 | 879.44 |
Rumex acetosa | 4445.72 | 577.98 | 5053.55 | 729.74 | 3116.77 | 599.85 |
Veronica chamaedrys | 4152.34 | 363.30 | 4693.61 | 683.16 | 4793.10 | 325.54 |
Agrostis capillaris | 1732.67 | 465.26 | 1772.78 | 464.61 | 3122.02 | 691.36 |
Festuca rubra | 2243.16 | 397.69 | 2619.04 | 273.65 | 1970.97 | 422.58 |
Meadow sward | 1996.22 | 189.43 | 1764.76 | 134.49 | 1947.93 | 257.06 |
Necromass | 2918.24 | 678.84 | 2574.81 | 444.91 | 2493.58 | 260.95 |
Total content | 4552.69 | 629.33 | 4105.13 | 784.38 | 4597.84 | 593.90 |
Exchangeable forms | 141.82 | 21.93 | 107.01 | 19.80 | 171.29 | 61.33 |
Calcium [mg·kg−1] | ||||||
Achillea millefolium | 21,547.36 | 2705.41 | 14,682.14 | 1560.77 | 18,224.00 | 1836.71 |
Lotus corniculatus | 17,858.93 | 3103.17 | 24,205.00 | 3936.78 | 14,357.00 | 2365.49 |
Plantago lanceolata | 26,672.14 | 5420.83 | 22,020.50 | 1712.22 | 23,441.88 | 4692.74 |
Rumex acetosa | 9595.00 | 786.79 | 7683.33 | 1468.74 | 9049.00 | 1412.97 |
Veronica chamaedrys | 17,721.25 | 2969.12 | 21,576.98 | 4195.19 | 14,822.50 | 4148.19 |
Agrostis capillaris | 5338.89 | 1236.95 | 11,111.00 | 3052.31 | 14,238.50 | 3669.30 |
Festuca rubra | 7772.86 | 1988.23 | 11,915.42 | 1619.51 | 5531.25 | 2765.82 |
Meadow sward | 7474.06 | 1378.87 | 5545.83 | 743.51 | 5972.50 | 990.13 |
Necromass | 13,382.50 | 2956.65 | 12,445.83 | 2789.52 | 10,877.50 | 3095.58 |
Total content | 1191.60 | 168.17 | 1363.75 | 283.05 | 1063.33 | 152.72 |
Exchangeable forms | 1606.93 | 246.77 | 1357.58 | 246.30 | 1061.20 | 208.75 |
Manganese [mg·kg−1] | ||||||
Achillea millefolium | 397.13 | 70.11 | 452.30 | 75.62 | 393.78 | 76.94 |
Lotus corniculatus | 134.77 | 30.26 | 213.29 | 66.53 | 101.09 | 19.93 |
Plantago lanceolata | 147.90 | 27.59 | 199.14 | 22.58 | 193.50 | 13.93 |
Rumex acetosa | 324.83 | 84.85 | 262.35 | 63.22 | 310.65 | 88.85 |
Veronica chamaedrys | 311.21 | 37.05 b | 157.00 | 15.81 a | 185.41 | 33.11 ab |
Agrostis capillaris | 698.24 | 64.07 | 631.11 | 113.01 | 601.13 | 83.27 |
Festuca rubra | 519.13 | 59.85 | 450.05 | 132.35 | 415.39 | 46.05 |
Meadow sward | 502.80 | 66.52 | 472.79 | 112.48 | 457.33 | 84.10 |
Necromass | 1091.72 | 153.33 b | 496.34 | 57.53 a | 865.75 | 196.34 ab |
Total content | 1282.87 | 125.06 | 954.85 | 97 59 | 928.33 | 92.89 |
Exchangeable forms | 95.21 | 8.39 | 77.93 | 19.11 | 92.23 | 10.94 |
Copper [mg·kg−1] | ||||||
Achillea millefolium | 16.24 | 1.64 | 21.53 | 3.98 | 14.07 | 2.07 |
Lotus corniculatus | 9.64 | 0.67 | 9.85 | 1.13 | 9.19 | 0.81 |
Plantago lanceolata | 12.54 | 0.56 | 14.96 | 1.49 | 15.63 | 3.16 |
Rumex acetosa | 8.78 | 1.28 | 9.73 | 1.35 | 10.15 | 1.76 |
Veronica chamaedrys | 11.83 | 0.91 | 12.13 | 1.63 | 12.47 | 1.80 |
Agrostis capillaris | 11.78 | 2.01 b | 6.33 | 0.41 a | 7.60 | 0.94 ab |
Festuca rubra | 7.64 | 0.67 | 8.30 | 1.26 | 7.30 | 1.59 |
Meadow sward | 12.23 | 1.30 | 12.91 | 1.03 | 11.05 | 1.20 |
Necromass | 11.42 | 1.79 | 9.93 | 0.79 | 11.50 | 1.99 |
Total content | 27.51 | 4.58 | 25.08 | 3.13 | 21.00 | 2.80 |
Exchangeable forms | 0.28 | 0.05 | 0.77 | 0.57 | 0.33 | 0.10 |
Iron [mg·kg−1] | ||||||
Achillea millefolium | 194.31 | 34.31 | 400.11 | 214.38 | 203.76 | 51.18 |
Lotus corniculatus | 137.60 | 18.80 | 272.44 | 68.72 | 168.36 | 26.36 |
Plantago lanceolata | 318.44 | 74.61 | 295.04 | 61.32 | 165.04 | 33.89 |
Rumex acetosa | 371.88 | 150.80 | 360.31 | 113.33 | 198.30 | 36.34 |
Veronica chamaedrys | 206.04 | 33.49 | 140.94 | 16.30 | 243.80 | 45.89 |
Agrostis capillaris | 463.26 | 180.22 | 137.13 | 28.32 | 155.29 | 30.93 |
Festuca rubra | 253.04 | 64.57 | 281.50 | 54.12 | 175.47 | 54.03 |
Meadow sward | 133.14 | 13.91 | 263.04 | 64.73 | 174.00 | 31.28 |
Necromass | 579.23 | 170.62 | 409.26 | 77.47 | 963.04 | 432.24 |
Total content | 27,629.33 | 1636.96 | 30,843.29 | 3129.27 | 29,291.00 | 3528.17 |
Exchangeable forms | 4.04 | 3.50 | 20.35 | 12.77 | 0.73 | 0.19 |
Zinc [mg·kg−1] | ||||||
Achillea millefolium | 64.52 | 8.21 | 99.25 | 12.31 | 95.35 | 16.46 |
Lotus corniculatus | 48.19 | 7.48 | 77.52 | 24.77 | 77.83 | 13.55 |
Plantago lanceolata | 82.52 | 5.09 | 88.93 | 11.81 | 103.23 | 11.91 |
Rumex acetosa | 53.70 | 2.16ab | 79.33 | 8.47b | 73.83 | 4.76b |
Veronica chamaedrys | 84.29 | 7.79 | 92.39 | 10.03 | 98.03 | 19.57 |
Agrostis capillaris | 74.77 | 4.69 | 76.12 | 8.55 | 69.22 | 9.08 |
Festuca rubra | 54.91 | 6.69 | 67.11 | 9.37 | 42.10 | 7.99 |
Meadow sward | 61.93 | 5.59 | 69.08 | 5.46 | 64.01 | 9.11 |
Necromass | 81.49 | 5.00 | 87.55 | 7.01 | 90.49 | 22.06 |
Total content | 87.54 | 5.34 | 107.46 | 8.02 | 106.14 | 12.53 |
Exchangeable forms | 2.83 | 0.35 | 4.16 | 1.34 | 4.68 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruchniewicz, D.; Łobas, Z.; Dradrach, A.; Żołnierz, L. The Influence of Management on the Content of Macro- and Microelements in Plant Shoots of a Meadow Sward of an Arrhenatheretalia Plant Community. Agronomy 2025, 15, 1020. https://doi.org/10.3390/agronomy15051020
Pruchniewicz D, Łobas Z, Dradrach A, Żołnierz L. The Influence of Management on the Content of Macro- and Microelements in Plant Shoots of a Meadow Sward of an Arrhenatheretalia Plant Community. Agronomy. 2025; 15(5):1020. https://doi.org/10.3390/agronomy15051020
Chicago/Turabian StylePruchniewicz, Daniel, Zbigniew Łobas, Agnieszka Dradrach, and Ludwik Żołnierz. 2025. "The Influence of Management on the Content of Macro- and Microelements in Plant Shoots of a Meadow Sward of an Arrhenatheretalia Plant Community" Agronomy 15, no. 5: 1020. https://doi.org/10.3390/agronomy15051020
APA StylePruchniewicz, D., Łobas, Z., Dradrach, A., & Żołnierz, L. (2025). The Influence of Management on the Content of Macro- and Microelements in Plant Shoots of a Meadow Sward of an Arrhenatheretalia Plant Community. Agronomy, 15(5), 1020. https://doi.org/10.3390/agronomy15051020