Optimizing In Vitro Propagation of “Ladania” (Cistus creticus L.) Through Interaction of Light Spectra and Plant Growth Regulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Effect of Plant Growth Regulators on Shoot Proliferation and Root Initiation
2.3. Light Spectra
2.4. Treatments of Different Light Spectra
2.5. Photosynthetic Rate, Chlorophyll Concentration, and Fluorescence Measurement
2.6. Acclimatization
2.7. In Vitro Culture Condition
2.8. Statistical Analysis
- (1)
- Fluorescent light (FL) (this light spectrum was considered as the “control” for factor 1).
- (2)
- Red LED (R).
- (3)
- Blue LED (B).
- (4)
- White LED (W).
- (1)
- Hf (no PGR).
- (2)
- 5 µM BA.
- (3)
- 5 μM mT.
- (1)
- Hf (no PGR).
- (2)
- 0.5 µM melatonin.
- (3)
- 1 μM IBA.
3. Results
3.1. Effect of Growth Regulators on In Vitro Multiple Micro-Shoot Production
3.2. Effect of Growth Regulators on In Vitro Rooting
3.3. Treatments of Growth Regulators Combined with Different Light Treatments
3.3.1. Effect on In Vitro Multiple Micro-Shoot Production
3.3.2. Effect on In Vitro Rooting
3.3.3. Effect on In Vitro Photosynthetic Rhythm
Multiplication Stage
Rooting Stage
3.3.4. Effect on In Vitro Chlorophyll Concentration
Multiplication Stage
Rooting Stage
3.3.5. Effect on In Vitro Chlorophyll Fluorescence
Multipication Stage
Rooting Stage
3.4. Acclimatization Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Catoni, R.; Gratani, L.; Varone, L. Physiological, Morphological and Anatomical Trait Variations between Winter and Summer Leaves of Cistus Species. Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 442–449. [Google Scholar] [CrossRef]
- Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: A Model for Exploring Labdane-Type Diterpenes’ Biosynthesis and a Natural Source of High Value Products with Biological, Aromatic, and Pharmacological Properties. Front. Chem. 2014, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Atsalakis, E.; Chinou, I.; Makropoulou, M.; Karabournioti, S.; Graikou, K. Evaluation of Phenolic Compounds in Cistus creticus Bee Pollen from Greece. Antioxidant and Antimicrobial Properties. Nat. Prod. Commun. 2017, 12, 1813–1816. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant Activity of Crude Extracts and Essential Oils from Flower Buds and Leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Varela-Stasinopoulou, D.S.; Nektarios, P.A.; Ntoulas, N.; Trigas, P.; Roukounakis, G.I. Sustainable Growth of Medicinal and Aromatic Mediterranean Plants Growing as Communities in Shallow Substrate Urban Green Roof Systems. Sustainability 2023, 15, 5940. [Google Scholar] [CrossRef]
- Valbuena, L.; Tarrega, R.; Luis, E. Influence of Heat on Seed Germination of Cistus laurifolius and Cistus ladanifer. Int. J. Wildland Fire 1992, 2, 15–20. [Google Scholar] [CrossRef]
- Raimundo, J.R.; Frazão, D.F.; Domingues, J.L.; Quintela-Sabarís, C.; Dentinho, T.P.; Anjos, O.; Alves, M.; Delgado, F. Neglected Mediterranean Plant Species Are Valuable Resources: The Example of Cistus ladanifer. Planta 2018, 248, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.C.; Sheng Gerald, L.T.; Teixeira da Silva, J.A. Micropropagation in the Twenty-First Century. Methods Mol. Biol. 2018, 1815, 17–46. [Google Scholar] [CrossRef]
- Madesis, P.; Konstantinidou, E.; Tsaftaris, A.; Nianiou-Obeidat, I. Micropropagation and Shoot Regeneration of Cistus creticus ssp. Creticus. J. Appl. Pharm. Sci. 2011, 1, 54–58. [Google Scholar]
- Iriondo, J.M.; Moreno, C.; Pérez, C. Micropropagation of Six Rockrose (Cistus) Species. HortScience 1995, 30, 1080–1081. [Google Scholar] [CrossRef]
- Ahmad, N.; Strnad, M. (Eds.) Meta-Topolin: A Growth Regulator for Plant Biotechnology and Agriculture; Springer: Singapore, 2021; ISBN 9789811590450. [Google Scholar]
- Iqbal, R.; Khan, T. Application of Exogenous Melatonin in Vitro and in Planta: A Review of Its Effects and Mechanisms of Action. Biotechnol. Lett. 2022, 44, 933–950. [Google Scholar] [CrossRef]
- Soltani, F.; Hasanpour, H.; Hekmati, M. Study of Light Spectrums Effects on Some Growth Parameters and Antioxidant Capacity of Anthemis gilanica. J. Space Sci. Technol. 2021, 14, 15–22. [Google Scholar] [CrossRef]
- Lee, J.H.; Nam, S.Y. Vegetative Propagation of Six Pachyphytum Species as Influenced by Different LED Light Qualities. Hortic. Sci. Technol. 2023, 41, 237–249. [Google Scholar] [CrossRef]
- Lee, J.H.; Jang, I.T.; Kim, E.A.; Shin, E.J.; Lee, S.; Lee, M.; Nam, S.Y. Evaluating the Influence of Various Light Spectra on the Growth and Morphological Responses of Air Plant (Tillandsia ionantha Planch.) Grown under Non-Substrate and Restricted Irrigation Conditions in a Controlled Environment Facility. J. Agric. Life Environ. Sci. 2024, 36, 546–561. [Google Scholar] [CrossRef]
- Brown, C.S.; Schuerger, A.C.; Sager, J.C. Growth and Photomorphogenesis of Pepper Plants under Red Light-Emitting Diodes with Supplemental Blue or Far-Red Lighting. J. Am. Soc. Hortic. Sci. 1995, 120, 808–813. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A Review on the Effects of Light-Emitting Diode (LED) Light on the Nutrients of Sprouts and Microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Barceló-Muñoz, A.; Barceló-Muñoz, M.; Gago-Calderon, A. Effect of LED Lighting on Physical Environment and Microenvironment on in Vitro Plant Growth and Morphogenesis: The Need to Standardize Lighting Conditions and Their Description. Plants 2021, 11, 60. [Google Scholar] [CrossRef]
- Wu, H.-C.; Lin, C.-C. Red Light-Emitting Diode Light Irradiation Improves Root and Leaf Formation in Difficult-to-Propagate Protea cynaroides L. Plantlets in Vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef]
- Lee, M.-J.; Son, K.-H.; Oh, M.-M. Increase in Biomass and Bioactive Compounds in Lettuce under Various Ratios of Red to Far-Red LED Light Supplemented with Blue LED Light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Kozai, T. (Ed.) Smart Plant Factory: The Next Generation Indoor Vertical Farms; Springer: Singapore, 2018; ISBN 9789811310645. [Google Scholar]
- Nacheva, L.; Dimitrova, N.; Koleva-Valkova, L.; Tarakanov, I.; Vassilev, A. Effect of Led Lighting on the Growth of Raspberry (Rubus idaeus L.) Plants in Vitro. Agric. Sci. 2021, 13, 126–140. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Cho, K.M.; Lee, H.Y.; Cho, D.Y.; Lee, G.O.; Jang, S.N.; Lee, Y.; Kim, D.; Son, K.-H. Effects of White LED Lighting with Specific Shorter Blue and/or Green Wavelength on the Growth and Quality of Two Lettuce Cultivars in a Vertical Farming System. Agronomy 2021, 11, 2111. [Google Scholar] [CrossRef]
- Kochetova, G.V.; Avercheva, O.V.; Bassarskaya, E.M.; Kushunina, M.A.; Zhigalova, T.V. Effects of Red and Blue LED Light on the Growth and Photosynthesis of Barley (Hordeum vulgare L.) Seedlings. J. Plant Growth Regul. 2023, 42, 1804–1820. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, Y.B.; Roh, Y.H.; Choi, I.-L.; Kim, J.; Kim, Y.; Yoon, H.S.; Kang, H.-M. Effect of Various LED Light Qualities, Including Wide Red Spectrum-LED, on the Growth and Quality of Mini Red Romaine Lettuce (Cv. Breen). Plants 2023, 12, 2056. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of Strawberry Plantlets Cultured in Vitro under Superbright Red and Blue Light-Emitting Diodes (LEDs). Plant Cell Tissue Organ Cult. 2003, 73, 43–52. [Google Scholar]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and Applications of Light-Emitting Diodes (LEDs) in in Vitro Plant Growth and Morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Lian, M.-L.; Murthy, H.N.; Paek, K.-Y. Effects of Light Emitting Diodes (LEDs) on the in Vitro Induction and Growth of Bulblets of Lilium Oriental Hybrid ‘Pesaro’. Sci. Hortic. 2002, 94, 365–370. [Google Scholar] [CrossRef]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In Vitro Culture of Chrysanthemum Plantlets Using Light-Emitting Diodes. Open Life Sci. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of Light Quality on Growth and Development of Protocorm-like Bodies of Dendrobium officinale in Vitro. Plant Cell Tissue Organ Cult. 2011, 105, 329–335. [Google Scholar] [CrossRef]
- Cioć, M.; Szewczyk, A.; Żupnik, M.; Kalisz, A.; Pawłowska, B. LED Lighting Affects Plant Growth, Morphogenesis and Phytochemical Contents of Myrtus communis L. in Vitro. Plant Cell Tissue Organ Cult. 2018, 132, 433–447. [Google Scholar] [CrossRef]
- Bantis, F.; Chatzigeorgiou, I.; Sismanis, M.; Ntinas, G.K.; Koukounaras, A. Vegetable Production in PFALs: Control of Micro-Environmental Factors, Principal Components and Automated Systems. Agriculture 2024, 14, 642. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Martins, J.P.R.; Rodrigues, L.C.A.; Santos, E.R.; Batista, B.G.; Gontijo, A.B.P.L.; Falqueto, A.R. Anatomy and Photosystem II Activity of in Vitro Grown Aechmea blanchetiana as Affected by 1-Naphthaleneacetic Acid. Biol. Plant. 2018, 62, 211–221. [Google Scholar] [CrossRef]
- Gomez, K.; Gomez, A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Koostra, G.; et al. Current Status and Future Challenges in Implementing and Upscaling Vertical Farming Systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Aremu, A.O.; Bairu, M.W.; Doležal, K.; Finnie, J.F.; Van Staden, J. Topolins: A Panacea to Plant Tissue Culture Challenges? Plant Cell Tissue Organ Cult. 2012, 108, 1–16. [Google Scholar] [CrossRef]
- Naaz, A.; Hussain, S.A.; Anis, M.; Alatar, A.A. Meta-Topolin Improved Micropropagation in Syzygium cumini and Acclimatization to Ex Vitro Conditions. Biol. Plant. 2019, 63, 174–182. [Google Scholar] [CrossRef]
- Jayaprakash, K.; Manokari, M.; Badhepuri, M.K.; Raj, M.C.; Dey, A.; Shekhawat, M.S. Influence of Meta-Topolin on in Vitro Propagation and Foliar Micro-Morpho-Anatomical Developments of Oxystelma esculentum (L.f.) Sm. Plant Cell Tissue Organ Cult. 2021, 147, 325–337. [Google Scholar] [CrossRef]
- Saia, S.; Giovino, A. An Efficient Protocol for Cistus crispus L. (Cistaceae) Micropropagation. Folia Hortic. 2020, 32, 1–9. [Google Scholar] [CrossRef]
- Ioannidis, K.; Koropouli, P. Effects of Different Media and Their Strengths in in Vitro Culture of Three Different Cistus creticus L. Populations and Their Genetic Assessment Using Simple Sequence Repeat Molecular Markers. Horticulturae 2024, 10, 104. [Google Scholar] [CrossRef]
- Badhepuri, M.K.; Manokari, M.; Cokul Raj, M.; Jogam, P.; Dey, A.; Faisal, M.; Alatar, A.A.; Joshee, N.; Singisala, N.R.; Shekhawat, M.S. Meta-Topolin Enhanced Direct Shoot Organogenesis and Regeneration from Leaf Explants of Coleus Forskohlii (Willd.) Briq. Ind. Crops Prod. 2023, 197, 116584. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Bertazza, G.; Baraldi, R.; Predieri, S. Light Effects on in Vitro Rooting of Pear Cultivars of Different Rhizogenic Ability. Plant Cell Tissue Organ Cult. 1995, 41, 139–143. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zeng, B.; Jiang, Q.; Wang, S.; Li, X. Growth and Transcriptomics Analysis of Michelia Macclurei Dandy Plantlets with Different LED Quality Treatments. Phyton 2023, 92, 2891–2906. [Google Scholar] [CrossRef]
- Alallaq, S.; Ranjan, A.; Brunoni, F.; Novák, O.; Lakehal, A.; Bellini, C. Red Light Controls Adventitious Root Regeneration by Modulating Hormone Homeostasis in Picea abies Seedlings. Front. Plant Sci. 2020, 11, 586140. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Growth Activity, Rooting Capacity, and Tropism: Three Auxinic Precepts Fulfilled by Melatonin. Acta Physiol. Plant. 2017, 39, 127. [Google Scholar] [CrossRef]
- Sarropoulou, V.N.; Therios, I.N.; Dimassi-Theriou, K.N. Melatonin Promotes Adventitious Root Regeneration in in Vitro Shoot Tip Explants of the Commercial Sweet Cherry Rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J. Pineal Res. 2012, 52, 38–46. [Google Scholar] [CrossRef]
- Hernández, I.G.; Gomez, F.J.V.; Cerutti, S.; Arana, M.V.; Silva, M.F. Melatonin in Arabidopsis thaliana Acts as Plant Growth Regulator at Low Concentrations and Preserves Seed Viability at High Concentrations. Plant Physiol. Biochem. 2015, 94, 191–196. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Halimah, N.; Ko, C.H.; Jeong, B.R. Blue LED Light Enhances Growth, Phytochemical Contents, and Antioxidant Enzyme Activities of Rehmannia Glutinosa Cultured in Vitro. Hortic. Environ. Biotechnol. 2015, 56, 105–113. [Google Scholar] [CrossRef]
- Kang, W.H.; Park, J.S.; Park, K.S.; Son, J.E. Leaf Photosynthetic Rate, Growth, and Morphology of Lettuce under Different Fractions of Red, Blue, and Green Light from Light-Emitting Diodes (LEDs). Hortic. Environ. Biotechnol. 2016, 57, 573–579. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Van Ieperen, W.; Harbinson, J. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Gong, X.; Zeng, Z.; Xue, X.; Hu, Y. Transcriptome Analysis Reveals Effects of Red and Blue Light-Emitting Diodes (LEDs) on the Growth, Chlorophyll Fluorescence and Endogenous Plant Hormones of Potato (Solanum tuberosum L.) Plantlets Cultured in Vitro. J. Integr. Agric. 2021, 20, 2914–2931. [Google Scholar] [CrossRef]
- Lim, M.-J.; Murthy, H.N.; Song, H.-Y.; Lee, S.-Y.; Park, S.-Y. Influence of White, Red, Blue, and Combination of LED Lights on In Vitro Multiplication of Shoots, Rooting, and Acclimatization of Gerbera jamesonii Cv. ‘Shy Pink’ Plants. Agronomy 2023, 13, 2216. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; He, S.; Shi, L.; Song, Y.; Lou, X.; He, D. LED-Supplied Red and Blue Light Alters the Growth, Antioxidant Status, and Photochemical Potential of in Vitro-Grown Gerbera jamesonii Plantlets. Hortic. Sci. Technol. 2019, 37, 473–489. [Google Scholar] [CrossRef]
- Silva, M.M.A.; De Oliveira, A.L.B.; Oliveira-Filho, R.A.; Gouveia-Neto, A.S.; Camara, T.J.R.; Willadino, L.G. Effect of Blue/Red LED Light Combination on Growth and Morphogenesis of Saccharum officinarum Plantlets in Vitro. In Proceedings of the Proceedings Volume 8947, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, SPIE BiOS, San Francisco, CA, USA, 3–6 February 2014; Farkas, D.L., Nicolau, D.V., Leif, R.C., Eds.; p. 89471. [Google Scholar]
- Hung, C.D.; Hong, C.-H.; Kim, S.-K.; Lee, K.-H.; Park, J.-Y.; Nam, M.-W.; Choi, D.-H.; Lee, H.-I. LED Light for in Vitro and Ex Vitro Efficient Growth of Economically Important Highbush Blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant. 2016, 38, 152. [Google Scholar] [CrossRef]
- Pela, Z.; Pentcheva, M.; Gerasopoulos, D.; Maloupa, E. In Vitro Induction of Adventitious Roots and Proliferation of Cistus creticus Creticus L. Plants. Acta Hortic. 2000, 541, 317–322. [Google Scholar] [CrossRef]
- Zygomala, A.M.; Ioannidis, C.; Koropouli, X. In Vitro Propagation of Cistus creticus L. Acta Hortic. 2003, 616, 391–396. [Google Scholar] [CrossRef]
Light Treatment | UV% | B% | G% | R% | FR% | R/FR | CCT (°K) |
---|---|---|---|---|---|---|---|
White | 0.03 | 29.10 | 44.79 | 24.06 | 2.03 | 6.51 | 6955 |
Blue | 0.12 | 96.95 | 1.51 | 0.65 | 0.78 | 0.51 | 1621 |
Red | 0.09 | 0.35 | 0.74 | 97.83 | 1.00 | 15.46 | 4727 |
Fluorescent | 0.67 | 27.68 | 46.95 | 21.19 | 3.51 | 3.27 | 5556 |
Growth Regulators | R | B | W | FL |
---|---|---|---|---|
Hf | 1.77 ± 0.36 * Ca ** | 1.14 ± 0.07 Db | 2.36 ± 0.35 Ba | 2.72 ± 0.51 Ab |
5 μM BA | 1.81 ± 0.15 Ba | 1.44 ± 0.27 Ca | 1.35 ± 0.18 Cb | 3.03 ± 0.46 Aa |
5 μM mT | 1.39 ± 0.16 Bb | 1.51 ± 0.22 ABa | 1.34 ± 0.27 Bb | 1.61 ± 0.25 Ac |
Rooting regulators | ||||
Hf | 1.72 ± 0.31 Ca | 1.15 ± 0.11 Da | 2.32 ± 0.39 Ba | 2.69 ± 0.45 Aa |
0.5 μM MEL | 1.29 ± 0.36 Bb | 1.23 ± 0.12 Ba | 1.72 ± 0.41 Ab | 1.73 ± 0.16 Ab |
1 μM IBA | 1.76 ± 0.24 Ba | 1.17 ± 0.07 Ca | 1.78 ± 0.23 Bb | 2.73 ± 0.40 Aa |
Growth Regulators | R | B | W | FL |
---|---|---|---|---|
Hf | 0.682 ± 0.087 * Aba ** | 0.614 ± 0.105 * Ba | 0.670 ± 0.096 ABa | 0.703 ± 0.086 Aa |
5 μM BA | 0.567 ± 0.082 Ab | 0.600 ± 0.093 Aa | 0.620 ± 0.043 Aa | 0.275 ± 0.181 Bb |
5 μM mT | 0.702 ± 0.093 Aa | 0.458 ± 0.102 Bb | 0.662 ± 0.069 Aa | 0.653 ± 0.067 Aa |
Rooting regulators | ||||
Hf | 0.630 ± 0.099 Aa | 0.625 ± 0.102 Aa | 0.673 ± 0.100 Aa | 0.632 ± 0.108 Ab |
0.5 μM MEL | 0.588 ± 0.186 Ba | 0.689 ± 0.061 Aa | 0.525 ± 0.086 Bb | 0.733 ± 0.034 Aa |
1 μM IBA | 0.672 ± 0.140 Aa | 0.321 ± 0.158 Bb | 0.672 ± 0.063 Aa | 0.724 ± 0.072 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsanou, C.E.; Kostas, S.; Bantis, F.; Bertsouklis, K.; Hatzilazarou, S. Optimizing In Vitro Propagation of “Ladania” (Cistus creticus L.) Through Interaction of Light Spectra and Plant Growth Regulators. Agronomy 2025, 15, 774. https://doi.org/10.3390/agronomy15040774
Katsanou CE, Kostas S, Bantis F, Bertsouklis K, Hatzilazarou S. Optimizing In Vitro Propagation of “Ladania” (Cistus creticus L.) Through Interaction of Light Spectra and Plant Growth Regulators. Agronomy. 2025; 15(4):774. https://doi.org/10.3390/agronomy15040774
Chicago/Turabian StyleKatsanou, Chrysanthi Evangelia, Stefanos Kostas, Filippos Bantis, Konstantinos Bertsouklis, and Stefanos Hatzilazarou. 2025. "Optimizing In Vitro Propagation of “Ladania” (Cistus creticus L.) Through Interaction of Light Spectra and Plant Growth Regulators" Agronomy 15, no. 4: 774. https://doi.org/10.3390/agronomy15040774
APA StyleKatsanou, C. E., Kostas, S., Bantis, F., Bertsouklis, K., & Hatzilazarou, S. (2025). Optimizing In Vitro Propagation of “Ladania” (Cistus creticus L.) Through Interaction of Light Spectra and Plant Growth Regulators. Agronomy, 15(4), 774. https://doi.org/10.3390/agronomy15040774