Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Soil Properties Analysis
2.3. Soil DNA Extraction and pqqC Gene Quantification
2.4. High-Throughput Sequencing and Sequences Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Properties and P Fractions
3.2. Abundance and Community Diversity of pqqC Gene
3.3. Composition and Biomarkers of pqqC-Harboring Bacterial Communities
3.4. Relationships Between Soil Properties, pqqC-Harboring Bacterial Communities and Soil P Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
P | Phosphorus |
Pi | Inorganic P |
Po | Organic P |
SOC | Soil organic carbon |
N | Nitrogen |
Y0.5 | 0.5 years |
Y4 | 4 years |
Y16 | 16 years |
Y22 | 22 years |
IP | Inorganic P |
OP | Organic P |
OTUs | Operational taxonomic units |
PCoA | Principal coordinate analysis |
PERMANOVA | Permutational multivariate analysis |
LDA | Linear discriminant analysis |
LEfSe | linear discriminant analysis effect size |
SEM | Structural equation modeling |
SOM | Soil organic matter |
Mt | Million tons |
AP | Available P |
TP | Total P |
CFI | Comparative fit index |
GFI | Goodness of fit |
RMSEA | Root square mean error of approximation |
Appendix A
Node Name | Betweenness Centrality |
---|---|
g_Azotobacter | 0.2603 |
HCl-IP | 0.2248 |
Residual-P | 0.2031 |
Resin-IP | 0.1469 |
NaOH1-IP | 0.1331 |
NaOH2-IP | 0.1329 |
g_Rhizobacter | 0.0793 |
NaHCO3-IP | 0.0676 |
g_Caballeronia | 0.0601 |
g_Mycobacterium | 0.0555 |
NaHCO3-OP | 0.0393 |
g_Rhodoplanes | 0.0301 |
g_Burkholderia | 0.0142 |
g_Methylibium | 0.0142 |
g_Saccharopolyspora | 0.0111 |
g_Noviherbaspirillum | 0.0083 |
g_Bosea | 0.0075 |
g_Edaphobacter | 0.001 |
g_Rubrobacter | 0 |
g_Variovorax | 0 |
g_Pseudarthrobacter | 0 |
g_Azoarcus | 0 |
NaOH2-OP | 0 |
g_Methylococcus | 0 |
g_Paradevosia | 0 |
g_Skermanella | 0 |
g_Cereibacter | 0 |
pH | SOC | cLPi | cMLPi | cSPi | pLPi | pMLPi | pSPi | cNaHCO3-OP | cNaOH1-OP | cNaOH2-OP | pNaHCO3-OP | pNaOH1-OP | pNaOH2-OP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.676 ** | −0.876 ** | −0.929 ** | 0.45 | −0.706 ** | −0.715 ** | 0.679 ** | −0.785 ** | −0.656 ** | −0.265 | −0.562 * | −0.262 | 0.124 |
SOC | −0.676 ** | 1 | 0.721 ** | 0.773 ** | −0.238 | 0.509 * | 0.641 ** | −0.524 * | 0.668 ** | 0.35 | 0.550 * | 0.524 * | 0.138 | 0.265 |
cLPi | −0.876 ** | 0.721 ** | 1 | 0.948 ** | −0.556* | 0.874 ** | 0.850 ** | −0.818 ** | 0.897 ** | 0.644 ** | 0.321 | 0.697 ** | 0.359 | 0.044 |
cMLPi | −0.929 ** | 0.773 ** | 0.948 ** | 1 | −0.444 | 0.781 ** | 0.804 ** | −0.715 ** | 0.840 ** | 0.590 * | 0.256 | 0.618 * | 0.197 | −0.104 |
cSPi | 0.45 | −0.238 | −0.556 * | −0.444 | 1 | −0.844 ** | −0.832 ** | 0.900 ** | −0.476 | −0.165 | 0.235 | −0.641 ** | −0.468 | −0.032 |
pLPi | −0.706 ** | 0.509* | 0.874 ** | 0.781 ** | −0.844 ** | 1 | 0.950 ** | −0.965 ** | 0.774 ** | 0.447 | 0.047 | 0.782 ** | 0.491 | 0.076 |
pMLPi | −0.715 ** | 0.641 ** | 0.850 ** | 0.804 ** | −0.832 ** | 0.950 ** | 1 | −0.947 ** | 0.750 ** | 0.353 | 0.065 | 0.776 ** | 0.412 | 0.088 |
pSPi | 0.679 ** | −0.524 * | −0.818 ** | −0.715 ** | 0.900 ** | −0.965 ** | −0.947 ** | 1 | −0.738 ** | −0.435 | −0.038 | −0.782 ** | −0.550* | −0.085 |
cNaHCO3-OP | −0.785 ** | 0.668 ** | 0.897 ** | 0.840 ** | −0.476 | 0.774 ** | 0.750 ** | −0.738 ** | 1 | 0.744 ** | 0.341 | 0.871 ** | 0.506 * | 0.068 |
cNaOH1-OP | −0.656 ** | 0.35 | 0.644 ** | 0.590 * | −0.165 | 0.447 | 0.353 | −0.435 | 0.744 ** | 1 | 0.294 | 0.568 * | 0.671 ** | −0.079 |
cNaOH2-OP | −0.265 | 0.550 * | 0.321 | 0.256 | 0.235 | 0.047 | 0.065 | −0.038 | 0.341 | 0.294 | 1 | 0.144 | 0.129 | 0.753 ** |
pNaHCO3-OP | −0.562 * | 0.524 * | 0.697 ** | 0.618* | −0.641 ** | 0.782 ** | 0.776 ** | −0.782 ** | 0.871 ** | 0.568 * | 0.144 | 1 | 0.679 ** | 0.171 |
pNaOH1-OP | −0.262 | 0.138 | 0.359 | 0.197 | −0.468 | 0.491 | 0.412 | −0.550 * | 0.506 * | 0.671 ** | 0.129 | 0.679 ** | 1 | 0.271 |
pNaOH2-OP | 0.124 | 0.265 | 0.044 | −0.104 | −0.032 | 0.076 | 0.088 | −0.085 | 0.068 | −0.079 | 0.753 ** | 0.171 | 0.271 | 1 |
References
- Bi, Q.F.; Zheng, B.X.; Lin, X.Y.; Li, K.J.; Liu, X.P.; Hao, X.L.; Zhang, H.; Zhang, J.B.; Jaisi, D.P.; Zhu, Y.G. The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chem. Geol. 2018, 483, 56–64. [Google Scholar] [CrossRef]
- Mutwale, N.M.; Jorge, F.; Chabala, L.M.; Shepande, C.; Chishala, B.H.; Cambule, A.; Nhantumbo, A.; Matangue, M.; Braun, M.; Sandhage-Hofmann, A.; et al. Climatic effects on soil phosphorus pools and availability in sub-Saharan Africa. Eur. J. Soil Sci. 2024, 75, e13448. [Google Scholar] [CrossRef]
- Martinengo, S.; Schiavon, M.; Santoro, V.; Said-Pullicino, D.; Romani, M.; Miniotti, E.F.; Celi, L.; Martin, M. Assessing phosphorus availability in paddy soils: The importance of integrating soil tests and plant responses. Biol. Fertil. Soils 2023, 59, 391–405. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Lin, H.Y.; Chang, Z.F.; Li, Z.M.; Riaz, A.; Hou, E.Q. Magnesium-doped biochars increase soil phosphorus availability by regulating phosphorus retention, microbial solubilization and mineralization. Biochar 2024, 6, 68. [Google Scholar] [CrossRef]
- Xiao, D.; Tang, X.; Chen, S.; Chu, G.; Liu, Y.; Wang, D.; Xu, C. Aeration treatment promotes transformation of soil phosphorus fractions to plant-available phosphorus by modulating rice rhizosphere microbiota. Soil Tillage Res. 2025, 245, 106318. [Google Scholar] [CrossRef]
- Luo, X.; Elrys, A.S.; Zhang, L.; Ibrahim, M.M.; Liu, Y.; Fu, S.; Yan, J.; Ye, Q.; Wen, D.; Hou, E. The global fate of inorganic phosphorus fertilizers added to terrestrial ecosystems. One Earth 2024, 7, 1402–1413. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Xu, C.; Zhong, Y.; Xu, X.; Yuan, J.; Wang, J.; Zhang, Y. Ten years of urea fertilization alter the pqqC-harbouring community and increase soil inorganic phosphorus mobilization. Eur. J. Soil Sci. 2024, 75, e13563. [Google Scholar] [CrossRef]
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef]
- EL-Sharkawy, M.; Sleem, M.; Du, D.L.; El Baroudy, A.; Li, J.; Mahmoud, E.; Ali, N. Nano-water treatment residuals: Enhancing phosphorus kinetics and optimization in saline soils. Land Degrad. Dev. 2024, 35, 3314–3329. [Google Scholar] [CrossRef]
- Ishida, T.; Tamura, M.; Kimbi, S.B.; Tomozawa, Y.; Saito, M.; Hirayama, Y.; Nagasaka, I.; Onodera, S.I. Evaluation of Phosphorus Enrichment in Groundwater by Legacy Phosphorus in Orchard Soils with High Phosphorus Adsorption Capacity Using Phosphate Oxygen Isotope Analysis. Environ. Sci. Technol. 2024, 58, 5372–5382. [Google Scholar] [CrossRef]
- Global Consumption of Phosphate Fertilizer 2022, by Country. Available online: https://www.statista.com/statistics/1252669/phosphate-fertilizer-consumption-worldwide-by-country/ (accessed on 2 December 2024).
- Chen, X.; Wang, Y.; Wang, J.; Condron, L.M.; Guo, B.; Liu, J.; Qiu, G.; Li, H. Impact of ryegrass cover crop inclusion on soil phosphorus and pqqC- and phoD-harboring bacterial communities. Soil Tillage Res. 2023, 234, 105823. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D.; et al. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Jiang, N.; Wei, K.; Pu, J.; Huang, W.; Bao, H.; Chen, L. A balanced reduction in mineral fertilizers benefits P reserve and inorganic P-solubilizing bacterial communities under residue input. Appl. Soil Ecol. 2021, 159, 103833. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Ghimire, R.; Zhang, N.; Zhou, S.; Zhao, F.; Wang, J. Linking soil phosphorus fractions to associated microbial functional profiles under crop rotation on the Loess Plateau of China. Soil Tillage Res. 2023, 233, 105809. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhang, J.; Ji, H.; Liao, Y.; Ma, X.; Li, Q.; Zhang, Y.; Jiang, L.; Wang, R.; et al. Differential responses of soil phosphorus fractions to varied nitrogen compound additions in a meadow steppe. J. Environ. Manag. 2024, 369, 122337. [Google Scholar] [CrossRef]
- Wang, R.Z.; Yang, J.J.; Liu, H.Y.; Sardans, J.; Zhang, Y.H.; Wang, X.B.; Wei, C.Z.; Lu, X.T.; Dijkstra, F.A.; Jiang, Y.; et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 2022, 103, e3616. [Google Scholar] [CrossRef] [PubMed]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, R.; Liu, Q.; Qiang, W.; Liang, J.; Hou, E.; Zhao, C.; Pang, X. Linking soil phosphorus fractions to abiotic factors and the microbial community during subalpine secondary succession: Implications for soil phosphorus availability. Catena 2023, 233, 107501. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Olivares, F.L.; Canellas, L.P.; Smith, D.S.; Paul Voroney, R. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chem. Biol. Technol. Agric. 2023, 10, 29. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yuan, J.; Tang, Z.; Wang, J.; Zhang, Y. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities. Microb. Ecol. 2023, 86, 2716–2732. [Google Scholar] [CrossRef]
- Deng, P.; Zhou, Y.; Chen, W.; Tang, F.; Wang, Y. Microbial mechanisms for improved soil phosphorus mobilization in monoculture conifer plantations by mixing with broadleaved trees. J. Environ. Manag. 2024, 359, 120955. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Z.; Yang, Y.; Gao, Y.; Mahmood, M.; Jiao, H.; Wang, Z.; Liu, J. Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agric. Ecosyst. Environ. 2023, 342, 108226. [Google Scholar] [CrossRef]
- Pu, Y.; Lang, S.; Li, Y.; Li, T.; Zhang, S.; Xu, X.; Yuan, D.; Jia, Y.; Wang, G.; Li, B. Regulation of soil phosphorus availability in alpine meadows: Insights from phosphate-mobilising bacteria. Appl. Soil Ecol. 2024, 204, 105730. [Google Scholar] [CrossRef]
- Shi, Q.; Song, Q.; Shan, X.; Li, X.; Wang, S.; Fu, H.; Sun, Z.; Liu, Y.; Li, T. Microorganisms regulate soil phosphorus fractions in response to low nocturnal temperature by altering the abundance and composition of the pqqC gene rather than that of the phoD gene. Biol. Fertil. Soils 2023, 59, 973–987. [Google Scholar] [CrossRef]
- Yang, L.; Du, L.; Li, W.; Wang, R.; Guo, S. Divergent responses of phoD- and pqqC-harbouring bacterial communities across soil aggregates to long fertilization practices. Soil Tillage Res. 2023, 228, 105634. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Xiangmin, R.; Fei, J.; Peng, J.; Luo, G. Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota. Agric. Ecosyst. Environ. 2023, 355, 108582. [Google Scholar] [CrossRef]
- Qin, X.; Guo, S.; Zhai, L.; Pan, J.; Khoshnevisan, B.; Wu, S.; Wang, H.; Yang, B.; Ji, J.; Liu, H. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil. Environ. Pollut. 2020, 266, 115304. [Google Scholar] [CrossRef]
- Siles, J.A.; Starke, R.; Martinovic, T.; Parente Fernandes, M.L.; Orgiazzi, A.; Bastida, F. Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining. Soil Biol. Biochem. 2022, 174, 108826. [Google Scholar] [CrossRef]
- Shi, W.; Xing, Y.; Zhu, Y.; Gao, N.; Ying, Y. Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microb. Biotechnol. 2022, 15, 2097–2111. [Google Scholar] [CrossRef]
- Wei, C.; Liu, S.; Li, Q.; He, J.; Sun, Z.; Pan, X. Diversity analysis of vineyards soil bacterial community in different planting years at eastern foot of Helan Mountain, Ningxia. Rhizosphere 2023, 25, 100650. [Google Scholar] [CrossRef]
- Li, Q.; Andom, O.; Li, Y.; Cheng, C.; Deng, H.; Sun, L.; Li, Z. Responses of grape yield and quality, soil physicochemical and microbial properties to different planting years. Eur. J. Soil Biol. 2024, 120, 103587. [Google Scholar] [CrossRef]
- Song, R.; Li, Y.; Zhu, Z.; Zhang, L.; Wang, H.; Li, H. Vineyard reclamation alters soil properties and microbial community in desertified land. Catena 2024, 246, 108399. [Google Scholar] [CrossRef]
- Song, J.; Zhang, A.; Gao, F.; Li, M.; Zhao, X.; Zhang, J.; Wang, G.; Hou, Y.; Cheng, S.; Qu, H.; et al. Reduced nitrogen fertilization from pre-flowering to pre-veraison alters phenolic profiles of Vitis vinifera L. Cv. Cabernet Gernischt wine of Yantai, China. Food Res. Int. 2023, 173, 113339. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Sommers, L.E. Chemical and microbiological properties. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Condron, L.M.; Goh, K.M. Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. J. Soil Sci. 1989, 40, 383–395. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis, 3rd ed.; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Hu, M.; Le, Y.; Sardans, J.; Yan, R.; Zhong, Y.; Sun, D.; Tong, C.; Peñuelas, J. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands. Glob. Chang. Biol. 2023, 29, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Abbasi, A.; Hossain, L.; Leydesdorff, L. Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Informetr. 2012, 6, 403–412. [Google Scholar] [CrossRef]
- Assenov, Y.; Ramírez, F.; Schelhorn, S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 2008, 24, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Wang, L.; Zhao, J.S.; Niu, Y.H.; Xiao, H.B.; Wang, Z.; Yu, S.X.; Shi, Z.H. Forty-year-old orchards promote carbon storage by changing aggregate-associated enzyme activities and microbial communities. Catena 2022, 213, 106195. [Google Scholar] [CrossRef]
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Cao, N.; Zhi, M.; Zhao, W.; Pang, J.; Hu, W.; Zhou, Z.; Meng, Y. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Tillage Res. 2022, 220, 105390. [Google Scholar] [CrossRef]
- George, T.S.; Gregory, P.J.; Wood, M.; Read, D.; Buresh, R.J. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol. Biochem. 2002, 34, 1487–1494. [Google Scholar] [CrossRef]
- Malik, M.A.; Marschner, P.; Khan, K.S. Addition of organic and inorganic P sources to soil—Effects on P pools and microorganisms. Soil Biol. Biochem. 2012, 49, 106–113. [Google Scholar] [CrossRef]
- Joshi, S.R.; Tfaily, M.M.; Young, R.P.; McNear, D.H., Jr. Root exudates induced coupled carbon and phosphorus cycling in a soil with low phosphorus availability. Plant Soil 2024, 498, 371–390. [Google Scholar] [CrossRef]
- Cavalcante, H.; Araújo, F.; Noyma, N.P.; Becker, V. Phosphorus fractionation in sediments of tropical semiarid reservoirs. Sci. Total Environ. 2018, 619–620, 1022–1029. [Google Scholar] [CrossRef]
- Garland, G.; Bünemann, E.K.; Oberson, A.; Frossard, E.; Snapp, S.; Chikowo, R.; Six, J. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Biol. Biochem. 2018, 116, 91–98. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis, 2nd ed.; Cartar, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 2007; pp. 75–86. [Google Scholar]
- Cade-Menun, B.J.; Doody, D.G.; Liu, C.W.; Watson, C.J. Long-term Changes in Grassland Soil Phosphorus with Fertilizer Application and Withdrawal. J. Environ. Qual. 2017, 46, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Boitt, G.; Black, A.; Wakelin, S.; Condron, L.M.; Chen, L. Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. Agric. Ecosyst. Environ. 2017, 239, 228–235. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef]
- Enebe, M.C.; Babalola, O.O. The Influence of Soil Fertilization on the Distribution and Diversity of Phosphorus Cycling Genes and Microbes Community of Maize Rhizosphere Using Shotgun Metagenomics. Genes 2021, 12, 1022. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Xue, C.; Jiang, Q.; Xiao, Y.; Zhang, F.; Guo, S.; Shen, Q.; Ling, N. Soil Carbon, Nitrogen, and Phosphorus Cycling Microbial Populations and Their Resistance to Global Change Depend on Soil C:N:P Stoichiometry. mSystems 2020, 5, e00162-20. [Google Scholar] [CrossRef]
- Ghani, M.I.; Ali, A.; Atif, M.J.; Pathan, S.I.; Pietramellara, G.; Ali, M.; Amin, B.; Cheng, Z.H. Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant Soil 2022, 480, 603–624. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Li, K.; Qiao, J.; Guo, Y.; Liu, Z.; Guo, X. Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine. Appl. Microbiol. Biot. 2021, 105, 7035–7050. [Google Scholar] [CrossRef] [PubMed]
- Favet, J.; Lapanje, A.; Giongo, A.; Kennedy, S.; Aung, Y.Y.; Cattaneo, A.; Davis-Richardson, A.G.; Brown, C.T.; Kort, R.; Brumsack, H.J.; et al. Microbial hitchhikers on intercontinental dust: Catching a lift in Chad. ISME J. 2013, 7, 850–867. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Song, R.; An, X.; Chu, G.; Jia, H. Soil pqqC-harboring bacterial community response to increasing aridity in semi-arid grassland ecosystems: Diversity, co-occurrence network, and assembly process. Front. Microbiol. 2022, 13, 1019023. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, D.; Zang, L.; Zhang, G.; Liu, Q.; He, Y.; Ding, F.; Wang, S.; Zhou, C.; Yang, Y.; et al. Natural restoration of degraded karst vegetation shifts soil microbial phosphorus acquisition strategies. Plant Soil 2023, 490, 201–215. [Google Scholar] [CrossRef]
- Davinic, M.; Fultz, L.M.; Acosta-Martinez, V.; Calderón, F.J.; Cox, S.B.; Dowd, S.E.; Allen, V.G.; Zak, J.C.; Moore-Kucera, J. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol. Biochem. 2012, 46, 63–72. [Google Scholar] [CrossRef]
- El-Sorady, G.A.; El-Banna, A.A.A.; Abdelghany, A.M.; Salama, E.A.A.; Ali, H.M.; Siddiqui, M.H.; Hayatu, N.G.; Paszt, L.S.; Lamlom, S.F. Response of Bread Wheat Cultivars Inoculated with Azotobacter Species under Different Nitrogen Application Rates. Sustainability 2022, 14, 8394. [Google Scholar] [CrossRef]
- Azene, B.; Zhu, R.; Pan, K.; Sun, X.; Nigussie, Y.; Gruba, P.; Raza, A.; Guadie, A.; Wu, X.; Zhang, L. Land use change alters phosphatase enzyme activity and phosphatase-harboring microbial abundance in the subalpine ecosystem of southeastern Qinghai-Tibet Plateau, China. Ecol. Indic. 2023, 153, 110416. [Google Scholar] [CrossRef]
- Lagos, L.M.; Acuña, J.J.; Maruyama, F.; Ogram, A.; de la Luz Mora, M.; Jorquera, M.A. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 2016, 52, 1007–1019. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
P Fractions | Y0.5 | Y4 | Y16 | Y22 |
---|---|---|---|---|
Inorganic P | ||||
Labile-IP | 34.55 (5.73) b | 31.80 (3.61) b | 107.10 (17.14) a | 53.02 (3.92) b |
Resin-IP | 15.33 (1.79) b | 15.00 (1.70) b | 38.24 (6.14) a | 18.09 (1.70) b |
NaHCO3-IP | 19.22 (4.37) b | 16.80 (2.14) b | 68.86 (11.16) a | 34.94 (2.67) b |
Moderately labile-IP | ||||
NaOH1-IP | 33.71 (5.16) b | 28.91 (4.40) b | 169.99 (22.92) a | 57.91 (8.40) b |
Stable-IP | 295.50 (26.85) a | 108.74 (8.56) bc | 70.23 (10.93) c | 150.16 (25.31) b |
HCl-IP | 291.27 (26.67) a | 104.78 (8.42) bc | 57.64 (10.21) c | 144.39 (26.01) b |
NaOH2-IP | 4.23 (0.29) b | 3.96 (0.62) b | 12.59 (2.35) a | 5.76 (1.06) b |
Organic P | ||||
NaHCO3-OP (Labile-OP) | 12.64 (2.42) b | 11.85 (0.66) b | 39.47 (9.92) a | 29.56 (3.62) a |
NaOH1-OP (Moderately labile-OP) | 11.35 (2.42) a | 9.33 (1.47) a | 20.15 (5.66) a | 16.89 (1.79) a |
NaOH2-OP (Stable-OP) | 5.55 (1.36) ab | 4.23 (0.91) b | 5.55 (1.04) ab | 8.37 (0.66) a |
Residual P | 243.16 (22.81) ab | 159.64 (5.23) c | 283.47 (33.25) a | 207.11 (20.16) bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shao, Z.; Fang, S.; Cheng, J.; Guo, X.; Zhang, J.; Yu, C.; Mao, T.; Wu, G.; Zhang, H. Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years. Agronomy 2025, 15, 666. https://doi.org/10.3390/agronomy15030666
Wang X, Shao Z, Fang S, Cheng J, Guo X, Zhang J, Yu C, Mao T, Wu G, Zhang H. Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years. Agronomy. 2025; 15(3):666. https://doi.org/10.3390/agronomy15030666
Chicago/Turabian StyleWang, Xue, Zhubing Shao, Shuo Fang, Jieshan Cheng, Xiaotong Guo, Juan Zhang, Chunyan Yu, Tingting Mao, Guohui Wu, and Hongxia Zhang. 2025. "Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years" Agronomy 15, no. 3: 666. https://doi.org/10.3390/agronomy15030666
APA StyleWang, X., Shao, Z., Fang, S., Cheng, J., Guo, X., Zhang, J., Yu, C., Mao, T., Wu, G., & Zhang, H. (2025). Soil Inorganic Phosphorus Is Closely Associated with pqqC- Gene Abundance and Bacterial Community Richness in Grape Orchards with Different Planting Years. Agronomy, 15(3), 666. https://doi.org/10.3390/agronomy15030666