Effects of Phosphate Fertilizer Application on the Growth and Yield of Tartary Buckwheat under Low-Nitrogen Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Treatment
2.3. Sampling
2.4. Determination
2.4.1. Agronomic Characters and Yield
2.4.2. Root Morphology and Root Activity
2.4.3. Root Nitrogen Metabolism-Related Enzymes
2.4.4. Chlorophyll Content in Leaves
2.4.5. Antioxidant Enzyme Activity and MDA Content
2.5. Statistical Analysis
3. Results
3.1. Effects of Phosphorus Fertilizer Application on Agronomic Traits and Yield under Low-Nitrogen Treatment
3.2. Effects of Phosphorus Fertilizer Application on Root Morphology and Root Activity under Low-Nitrogen Treatment
3.3. Effects of Phosphorus Fertilizer Application on Enzymes Related to Root Nitrogen Metabolism under Low-Nitrogen Treatment
3.4. Effects of Phosphorus Fertilizer Application on Chlorophyll Content under Low-Nitrogen Treatment
3.5. Effects of Phosphorus Fertilizer Application on Antioxidant Enzyme Activity and MDA Content under Low-Nitrogen Treatment
3.6. Correlations of Items and Yield
4. Discussion
4.1. Phosphate Fertilizer Treatment Delayed the Senescence of Tartary Buckwheat under Low-Nitrogen Treatment
4.2. Phosphate Fertilizer Treatment Promoted the Root Growth of Tartary Buckwheat under Low-Nitrogen Treatment
4.3. Phosphate Fertilizer Treatment Increased the Yield of Tartary Buckwheat under Low Nitrogen Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Guo, R.; Li, S.; Chen, Y.; Li, Z.; He, P.; Huang, X.; Huang, K. Effects of continuous cropping on soil, senescence, and yield of Tartary buckwheat. Agron. J. 2021, 113, 5102–5113. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, Y.X.; Han, M.R.; Lei, X.H.; Leng, J.J.; Yang, Q.H.; Yang, P.; Gao, J.F. Effect of environment and variety on the physicochemical properties of Tartary buckwheat starch. J. Sci. Food Agric. 2023, 103, 2413–2424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Yang, Q.H.; Xia, M.J.; Bai, W.M.; Wang, P.K.; Gao, X.L.; Li, J.; Feng, B.L.; Gao, J.F. Effects of nitrogen level on the physicochemical properties of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) starch. Int. J. Biol. Macromol. 2019, 129, 799–808. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Q.H.; Wu, X.H.; Li, Z.Z.; Zhou, L.; Huang, X.Y.; Huang, K.F.; Chen, Q.F. Effect of reduced nitrogen application on yield formation and nitrogen metabolism enzyme activity of tartary buckwheat. Chin. J. Appl. Environ. Biol. 2021, 27, 105–111. (In Chinese) [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.S.; Wang, X.B.; Zhang, L.; Zhang, W.; Liu, D.Y.; Chen, X.P. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. J. Clean. Prod. 2021, 312, 127611. [Google Scholar] [CrossRef]
- Zhao, Z.B.; He, J.Z.; Quan, Z.; Wu, C.F.; Sheng, R.; Zhang, L.M.; Geisen, S. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 2020, 148, 107863. [Google Scholar] [CrossRef]
- Jiang, C.X.; Liu, H.T.; Zhang, W.; Yang, K.; Zhang, D.M.; Zhai, G.Q.; Wang, J.L.; Liu, E.K. Effect of reduced nitrogen application on yield, nitrogen utilization of fresh waxy maize and soil nitrate nitrogen content in Shanxi dryland. Soil Fertil. Sci. Chin. 2022, 12, 61–67. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, X.Q.; Zhang, F.S.; Zhang, H.L.; Schrode, J.; Rǒmheld, V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron. J. 2006, 98, 938. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World phosphorus use efficiency in cereal crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hao, Z.M.; Yuan, Y.H.; Li, C.L.; Zhang, J.J. Application of mineral phosphorus fertilizer influences rhizosphere chemical and biological characteristics. Arch. Agron. Soil Sci. 2023, 69, 771–784. [Google Scholar] [CrossRef]
- Xue, Y.X.; Liu, G.H.; Wang, X.Y. Effects of combined application of nitrogen, phosphate and potash fertilizers on plant height, photosynthetic rate and yield of corn under drip irrigation. J. Gansu Agric. Univ. 2020, 55, 77–86. (In Chinese) [Google Scholar] [CrossRef]
- Song, Y.X.; Chen, X.E.; Wei, R.; Chen, Q.F.; Huang, K.F. Effects of different ratios of NPK fertilizer on yield and quality of common buckwheat. Soil Fertil. Sci. Chin. 2014, 3, 49–53. (In Chinese) [Google Scholar] [CrossRef]
- Huang, K.F.; Li, Z.Z.; Wang, Y.; Zhou, L.; Wu, X.H.; Li, Z.D. Advances in high yield cultivation physiology of buckwheat in China. J. Guizhou Norm. Univ. 2019, 37, 115–120. (In Chinese) [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, Y.; Li, Z.Z.; Zhou, L.; Huang, X.Y.; Chen, Q.F.; Huang, K.F. Effect of different tillage methods on senescence and grain filling characteristics of tartary buckwheat. Acta Agric. Zhejiangensis 2019, 31, 1963–1970. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.S. Principle and Technology of Plant Physiological and Biochemical Experiments; Higher Education Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Magalhaes, J.R.; Huber, D.M. Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species. J. Plant Nutr. 1991, 14, 175–185. [Google Scholar] [CrossRef]
- Singh, R.P.; Srivastava, H.S. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol. Plant. 1986, 66, 413–416. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, X.; Dong, H. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Field Crop. Res. 2018, 216, 10–21. [Google Scholar] [CrossRef]
- Yamazaki, J.Y.; Kamimura, Y. Relationship between photosystem stoichiometries and changes in active oxygen scavenging enzymes in natural grown rice seedlings. Plant Growth Regul. 2002, 36, 113–120. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.Y.; Huang, X.Y.; Huang, K.F. Removal of apical dominance in common buckwheat improves grain fill and yield. Agron. J. 2023, 115, 1308–1319. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, Z.Z.; Zhao, Q.; Huang, X.Y.; Huang, K.F. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant Prod. Sci. 2019, 23, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, Y. Molecular basis of nitrogen starvation-induced leaf senescence. Front. Plant Sci. 2022, 13, 1013304. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.M.; Quan, S.X.; Ye, Q.; Zhang, L.; Liu, W.; Zhu, N.; Zhang, X.Q.; Ruan, W.Y.; Yi, K.K.; Crawford, N.M.; et al. A molecular framework underlying low nitrogen-induced early leaf senescence in Arabidopsis. Mol. Plant 2023, 16, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.L.; Yu, T.Y.; Zhou, J.; Sun, X.W.; Zhen, Y.M.; Shen, P.; Wu, Z.F.; Li, L.; Wang, C.B. Response of root morphology, leaf physiology and yield of stay-green and presenility types of peanut to foliar phosphorus application. J. Plant Nutr. Fert. 2020, 26, 532–540. (In Chinese) [Google Scholar]
- Piacentini, D.; Della, R.F.; Lanni, F.; Cittadini, M.; Palombi, M.; Fattorini, L.; Cecchetti, V.; Altamura, M.M.; Falasca, G. Brassinosteroids interact with nitric oxide in the response of rice root systems to arsenic stress. Environ. Exp. Bot. 2023, 209, 105287. [Google Scholar] [CrossRef]
- Fan, Y.F.; Gao, J.L.; Sun, J.Y.; Liu, J.; Su, Z.J.; Wang, Z.G.; Yu, X.F.; Hu, S.P. Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner Mongolia. Agron. J. 2021, 113, 4369–4385. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.C.; Xie, J.; Deng, G.Q.; Tu, T.H.; Guan, X.J.; Yang, Z.; Huang, S.; Chen, X.M.; Qiu, C.F.; et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop J. 2020, 9, 805–815. [Google Scholar] [CrossRef]
- Ullah, A.; Li, M.X.; Noor, J.; Tariq, A.; Liu, Y.; Shi, L.X. Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ 2019, 7, e8191. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.Y.; Wang, J.; Du, J.; Niu, Q.L.; Su, D.W.; Tian, X.T. Effects of phosphate fertilizer on yield and enzyme efficiency of leaves in spring maize. J. Maize Sci. 2017, 25, 117–122. (In Chinese) [Google Scholar] [CrossRef]
- Shao, M.X.; Patrick, M.; Fatteicher, C.; Schoenau, J. Effect of phosphorus fertilizer form, opener spread and rate of application on biomass yield, P uptake and recovery in a canola-wheat-pea rotation under controlled environment conditions. J. Plant Nutr. 2023, 46, 685–696. [Google Scholar] [CrossRef]
- Jorfi, A.; Alavifazel, M.; Gilani, A.; Ardakani, M.R.; Lak, S. Yield and morpho-physiological performance of quinoa (Chenopodium quinoa) genotypes as affected by phosphorus and zinc. J. Plant Nutr. 2022, 45, 2432–2446. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, Z.J.; Liu, G.M.; Qian, Z.H.; Jiang, Y.; Li, G.H.; Zhang, J.; Xu, K.; Dai, Q.G.; Guo, B.W.; et al. Optimization of combining controlled-release urea of different release period and normal urea improved rice yield and nitrogen use efficiency. Arch. Agron. Soil Sci. 2023, 69, 821–831. [Google Scholar] [CrossRef]
- Gao, L.C.; Xia, M.J.; Wan, C.X.; Jia, Y.H.; Yang, L.M.; Wang, M.; Wang, P.K.; Yang, Q.H.; Yang, P.; Gao, X.L.; et al. Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohyd. Polym. 2021, 273, 118570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, P.Y.; Li, S.H.; Chen, Y.; Wu, X.H.; Huang, K.F.; Huang, X.Y. Effects of nitrogen fertilizer applications on the early senescence and grain filling characteristics of Tartary buckwheat. Sci. Asia 2021, 47, 542–548. [Google Scholar] [CrossRef]
Treatment | Plant Height (cm) | Main Stem Node Number | Number of Main Stem Branches | Grain Number per Plant | Grain Weight per Plant (g) | Yield (kg·ha−1) |
---|---|---|---|---|---|---|
CK | 97.4 ± 2.7 c | 12.5 ± 1.4 b | 8.5 ± 0.9 b | 106.5 ± 5.9 c | 1.7 ± 0.11 c | 795.4 ± 19.7 c |
LP | 103.7 ± 3.2 b | 14.0 ± 2.4 b | 9.2 ± 0.8 b | 135.2 ± 6.5 b | 2.2 ± 0.18 b | 961.7 ± 27.2 b |
MP | 124.5 ± 8.5 a | 17.0 ± 1.6 a | 11.2 ± 1.5 a | 164.2 ± 9.2 a | 2.8 ± 0.18 a | 1218.9 ± 58.8 a |
HP | 96.0 ± 2.9 c | 13.3 ± 1.5 b | 6.8 ± 0.5 c | 84.8 ± 5.0 d | 1.5 ± 0.12 d | 670.1 ± 19.9 d |
Item | Treatment | Period | |||
---|---|---|---|---|---|
Seedling Stage | Flowering Stage | Filling Stage | Mature Stage | ||
Root length (cm) | CK | 41.54 ± 2.49 bc | 72.76 ± 3.25 c | 121.70 ± 4.91 b | 171.85 ± 6.91 b |
LP | 47.52 ± 2.71 b | 118.31 ± 3.86 b | 164.35 ± 7.24 a | 228.50 ± 12.05 a | |
MP | 55.88 ± 3.53 a | 142.81 ± 7.18 a | 175.28 ± 8.23 a | 234.54 ± 8.94 a | |
HP | 38.92 ± 2.90 c | 55.88 ± 2.73 d | 87.56 ± 6.00 c | 130.88 ± 5.46 c | |
Surface area (cm2) | CK | 8.88 ± 0.28 b | 13.95 ± 2.55 b | 21.94 ± 1.87 b | 37.74 ± 2.32 c |
LP | 9.73 ± 0.59 ab | 19.76 ± 2.00 a | 33.29 ± 2.24 a | 50.84 ± 2.57 b | |
MP | 9.97 ± 0.34 a | 21.71 ± 2.77 a | 37.59 ± 1.90 a | 60.46 ± 2.10 a | |
HP | 7.10 ± 0.41 c | 9.92 ± 0.81 c | 17.16 ± 1.87 c | 29.81 ± 1.57 d | |
Volume (cm3) | CK | 0.27 ± 0.03 bc | 0.54 ± 0.03 c | 0.72 ± 0.07 b | 1.76 ± 0.15 b |
LP | 0.30 ± 0.03 b | 0.78 ± 0.06 b | 1.32 ± 0.12 a | 3.74 ± 0.28 a | |
MP | 0.38 ± 0.05 a | 0.90 ± 0.05 a | 1.36 ± 0.08 a | 4.12 ± 0.13 a | |
HP | 0.22 ± 0.03 c | 0.35 ± 0.04 d | 0.77 ± 0.11 b | 1.44 ± 0.20 b | |
Root activity (μg·g−1·h−1) | CK | 27.34 ± 1.33 b | 55.67 ± 3.51 c | 79.09 ± 3.76 c | 28.76 ± 1.90 c |
LP | 51.11 ± 2.56 a | 90.23 ± 4.95 b | 92.68 ± 5.31 b | 38.03 ± 2.31 b | |
MP | 58.10 ± 3.76 a | 122.79 ± 7.69 a | 148.88 ± 8.29 a | 57.98 ± 3.47 a | |
HP | 21.32 ± 1.69 b | 49.88 ± 1.84 c | 53.30 ± 3.45 d | 15.85 ± 1.29 d |
Item | Treatment | Period | |||
---|---|---|---|---|---|
Seedling Stage | Flowering Stage | Filling Stage | Mature Stage | ||
Synthetase (GS, U·g−1·h−1) | CK | 1.67 ± 0.10 b | 2.02 ± 0.18 b | 2.14 ± 0.16 c | 1.62 ± 0.16 bc |
LP | 1.89 ± 0.15 b | 2.14 ± 0.24 b | 2.43 ± 0.28 b | 1.78 ± 0.16 b | |
MP | 2.22 ± 0.19 a | 2.54 ± 0.28 a | 3.77 ± 0.21 a | 2.14 ± 0.19 a | |
HP | 1.28 ± 0.12 c | 1.71 ± 0.16 c | 1.92 ± 0.18 c | 1.50 ± 0.19 c | |
Glutamate synthase (GOGAT, U·g−1·h−1) | CK | 6.28 ± 0.24 b | 18.27 ± 1.51 b | 9.79 ± 0.79 c | 7.02 ± 0.57 b |
LP | 7.75 ± 0.37 b | 19.62 ± 1.76 b | 12.00 ± 1.77 b | 8.65 ± 0.66 b | |
MP | 9.41 ± 0.73 a | 28.61 ± 2.60 a | 19.93 ± 1.86 a | 10.16 ± 1.06 a | |
HP | 3.93 ± 0.42 c | 12.37 ± 1.46 c | 5.91 ± 0.56 d | 3.88 ± 0.36 c | |
Glutamate dehydrogenase (GDH, U·g−1·h−1) | CK | 4.98 ± 0.35 c | 5.93 ± 0.31 c | 10.14 ± 1.13 b | 1.02 ± 0.09 c |
LP | 5.66 ± 0.23 b | 6.53 ± 0.25 b | 11.13 ± 0.92 a | 1.27 ± 0.10 b | |
MP | 6.54 ± 0.41 a | 8.25 ± 0.34 a | 11.80 ± 0.88 a | 1.88 ± 0.15 a | |
HP | 4.52 ± 0.23 d | 5.10 ± 0.22 d | 8.81 ± 0.53 c | 0.88 ± 0.07 d |
Item | Treatment | Period | |||
---|---|---|---|---|---|
Seedling Stage | Flowering Stage | Filling Stage | Mature Stage | ||
Superoxide dismutase (SOD, U·g−1·h−1) | CK | 99.4 ± 3.7 c | 250.8 ± 8.4 c | 232.1 ± 11.5 b | 195.4 ± 6.7 b |
LP | 128.8 ± 5.5 b | 259.7 ± 9.5 b | 253.2 ± 12.9 a | 208.3 ± 8.5 b | |
MP | 160.5 ± 8.4 a | 275.1 ± 10.8 a | 260.9 ± 11.2 a | 224.3 ± 10.8 a | |
HP | 78.0 ± 3.4 d | 230.8 ± 9.5 d | 209.1 ± 11.6 c | 174.2 ± 8.8 c | |
Peroxidase (POD, U·g−1·h−1) | CK | 415.6 ± 9.9 c | 619.6 ± 16.2 b | 1092.0 ± 25.5 c | 884.5 ± 17.3 c |
LP | 489.6 ± 15.8 b | 639.8 ± 15.7 b | 1553.7 ± 29.9 b | 1339.0 ± 22.0 b | |
MP | 614.8 ± 15.3 a | 758.6 ± 16.8 a | 2289.6 ± 29.3 a | 1575.4 ± 27.4 a | |
HP | 367.3 ± 10.7 d | 543.7 ± 13.5 c | 858.1 ± 31.0 d | 659.4 ± 18.1 d | |
Catalase (CAT, U·g−1·h−1) | CK | 1390.2 ± 35.7 c | 2683.4 ± 46.3 c | 4473.4 ± 54.7 c | 2773.4 ± 54.0 c |
LP | 1520.3 ± 40.5 b | 3573.4 ± 39.6 b | 5986.8 ± 58.7 b | 3846.7 ± 54.3 b | |
MP | 2033.7 ± 39.5 a | 3766.8 ± 42.5 a | 6466.8 ± 45.9 a | 4046.7 ± 51.0 a | |
HP | 1106.9 ± 41.3 d | 1906.7 ± 52.1 d | 2906.7 ± 60.0 d | 1280.0 ± 32.0 d | |
Malondialdehyde (MDA, μmol·g−1) | CK | 2.23 ± 0.14 b | 3.08 ± 0.14 b | 6.35 ± 0.13 b | 6.52 ± 0.15 b |
LP | 1.82 ± 0.13 c | 2.43 ± 0.14 c | 5.86 ± 0.20 bc | 6.25 ± 0.19 b | |
MP | 0.94 ± 0.11 d | 1.96 ± 0.11 d | 5.32 ± 0.14 c | 5.68 ± 0.19 c | |
HP | 2.65 ± 0.12 a | 3.78 ± 0.13 a | 6.73 ± 0.15 a | 8.06 ± 0.26 a |
Correlations with | Grain Number per Plant | Grain Weight per Plant | Yield |
---|---|---|---|
Plant height | 0.922 | 0.962 * | 0.959 * |
Main stem node number | 0.862 | 0.924 | 0.905 |
Number of main stem branches | 0.982 * | 0.967 * | 0.984 * |
Root length | 0.953 * | 0.91 | 0.913 |
Root surface area | 0.998 ** | 0.986 * | 0.986 * |
Root volume | 0.957 * | 0.947 | 0.932 |
Root activity | 0.990 ** | 0.985 * | 0.996 ** |
Synthetase | 0.977 * | 0.992 ** | 0.995 ** |
Glutamate synthase | 0.968 * | 0.924 | 0.943 |
Glutamate dehydrogenase | 0.964 * | 0.987 * | 0.988 * |
Chlorophyll a | 0.986 * | 0.957 * | 0.973 * |
Chlorophyll b | 0.980 * | 0.947 | 0.966 * |
Carotenoids | 0.984 * | 0.965 * | 0.983 * |
Superoxide dismutase | 0.987 * | 0.957 * | 0.972 * |
Peroxidase | 0.992 ** | 0.977 * | 0.975 * |
Catalase | 0.936 | 0.878 | 0.893 |
Malondialdehyde | −0.917 | −0.857 | −0.889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Tang, J.; Liu, C.; Huang, K.; Huang, X. Effects of Phosphate Fertilizer Application on the Growth and Yield of Tartary Buckwheat under Low-Nitrogen Condition. Agronomy 2023, 13, 1886. https://doi.org/10.3390/agronomy13071886
Zhou Q, Tang J, Liu C, Huang K, Huang X. Effects of Phosphate Fertilizer Application on the Growth and Yield of Tartary Buckwheat under Low-Nitrogen Condition. Agronomy. 2023; 13(7):1886. https://doi.org/10.3390/agronomy13071886
Chicago/Turabian StyleZhou, Qiuyue, Jingang Tang, Changmin Liu, Kaifeng Huang, and Xiaoyan Huang. 2023. "Effects of Phosphate Fertilizer Application on the Growth and Yield of Tartary Buckwheat under Low-Nitrogen Condition" Agronomy 13, no. 7: 1886. https://doi.org/10.3390/agronomy13071886
APA StyleZhou, Q., Tang, J., Liu, C., Huang, K., & Huang, X. (2023). Effects of Phosphate Fertilizer Application on the Growth and Yield of Tartary Buckwheat under Low-Nitrogen Condition. Agronomy, 13(7), 1886. https://doi.org/10.3390/agronomy13071886