Energy Crisis—Alternative Use of Winter Bread Wheat Grain Depending on Protein Content
Abstract
:1. Introduction
- (1)
- Crop yield;
- (2)
- Surface area of freshly managed soils.
2. Materials and Methods
2.1. General Characteristics of the Source of Input Data
- Fungicide protection (FP):
- Fungicide protection control (FP-0);
- Full fungicide protection (FP-F).
- Nitrogen rates (N), kg N ha−1: 0, 40, 80, 120, 160, 200, and 240 kg N ha−1.
- First treatment date—BBCH stage 31—Capalo 337.5 SE 1.5 L ha−1;
- Second treatment date—BBCH stage 39–49—Adexar Plus 2.0 L ha−1;
- Third treatment date—BBCH stage 65—Osiris 65 EC 2.0 L ha−1.
- Before the start of the spring vegetation period up to 80 kg N ha−1;
- At the late tillering stage/early shoot development stage (BBCH 29–31) up to 160 kg N ha−1;
- At the flag leaf stage (BBCH 39) up to 240 kg N ha−1.
2.2. Calculated Parameters
2.2.1. Direct Costs and Total Cost
2.2.2. Production Value
- (a)
- Wheat prices in 2015 (16 December 2015):
- (i)
- Fodder wheat up to (<12.0%)—614 PLN t−1; this price was taken into account for the fertiliser combination with 0, 40, 80 and 120 kg N ha−1;
- (ii)
- Consumer wheat (standard 12.0% protein)—663 PLN t−1; this price was taken into account for the fertiliser combination with 160 kg N ha−1;
- (iii)
- Protein premium > 13% → is standard price; that is, 729 PLN t−1 + 10%; the above-mentioned price was taken into account for the combination with 200 and 240 kg N ha−1.
- (b)
- Wheat grain prices in 2022 (on 16 December 2022):
- (i)
- Fodder wheat up to (<12.0%)—1269 PLN t−1; this price was taken into account for the combination with 0, 40, 80 and 120 kg N ha−1;
- (ii)
- Consumer wheat (standard 12.0% protein)—1334 PLN t−1; this price was taken into account for the combination with 160 kg N ha−1.
- (iii)
- Protein premium > 13% → is standard price; that is, 1467 PLN t−1 + 10% and the above-mentioned price was taken into account for the combination with 200 and 240 kg N ha−1.
2.2.3. Production and Economic Measures
2.3. Statistical Analysis
3. Results
3.1. Basic Characteristics of Grain
- (1)
- FP-0:
- (2)
- FP-F:
- (3)
- Yield gap (LP = GY—FP-0—GY—FP-F):
- (1)
- FP-0:
- (2)
- FP-F:
- (3)
- Differences in protein yield between the sites with full fungicide protection (FP-F) and those without fungicide protection (FP-0) are presented as protein yield gap (PRYgap):
3.2. Economic Ratios Related to Wheat Production in 2014 and 2015 According to Prices and Costs from 2015
- (1)
- FP-0:
- (2)
- FP-F:
- (1)
- FP-0:
- (2)
- FP-F:
- (1)
- FP-0:
- (2)
- FP-L:
- (1)
- FP-0:
- (2)
- FP-L:
3.3. Simulation of Economic Ratios Related to Wheat Production in 2014 and 2015 Based on the Costs and Prices of Grain in 2022
- (1)
- FP-0:
- (2)
- FP-F:
- (1)
- FP-0:
- (2)
- FP-F:
- (1)
- FP-0:
- (2)
- FP-F:
- (1)
- FP-0:
- (2)
- FP-F:
4. Discussion
- -
- Growing site (richness of soil);
- -
- Forecrop (reducing the impact of diseases);
- -
- Adequately high nitrogen rate (ensuring the desired quantity and quality of protein);
- -
4.1. Grain Quality
4.2. Economic and Comparative Analysis of Economic Ratios Related to Wheat Production in 2015 and 2022
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Traits | PR | GL | PRY | GLY |
---|---|---|---|---|
YG | 0.74 ** | 0.73 ** | 0.95 *** | 0.93 *** |
PR | 1.00 | 0.99 ** | 0.91 *** | 0.93 *** |
GL | 1.00 | 0.91 *** | 0.93 *** | |
PRY | 1.00 | 1.00 *** |
Indicators | GI | DC | IC | TC | NI-0 | NI-Sb | Prf-0 | Prf-Sb | GI/1euroDC | ME |
---|---|---|---|---|---|---|---|---|---|---|
GY | 0.96 *** | 0.69 *** | 0.52 ** | 0.67 *** | 0.94 *** | 0.94 *** | 0.77 *** | 0.69 *** | 0.50 ** | 0.96 *** |
GI | 1.00 | 0.75 *** | 0.57 ** | 0.74 *** | 0.96 *** | 0.96 *** | 0.75 *** | 0.66 *** | 0.45 * | 0.98 *** |
DC | 1.00 | 0.93 *** | 0.99 *** | 0.54 ** | 0.54 ** | 0.14 | 0.02 | −0.23 | 0.67 *** | |
IC | 1.00 | 0.94 *** | 0.32 | 0.32 | −0.08 | −0.20 | −0.42 * | 0.46 * | ||
TC | 1.00 | 0.52 ** | 0.52 ** | 0.12 | −0.01 | −0.25 | 0.65 *** | |||
NI-0 | 1.00 | 1.00 | 0.90 *** | 0.84 *** | 0.68 *** | 0.97 *** | ||||
NI-Sb | 1.00 | 0.90 *** | 0.84 *** | 0.68 *** | 0.97 *** | |||||
Prf-0 | 1.00 | 0.99 *** | 0.93 *** | 0.81 *** | ||||||
Prf-sb | 1.00 | 0.97 *** | 0.74 *** | |||||||
GI/1euroDC | 1.00 | 0.55 ** |
Indicators | GI | DC | IC | TC | NI-0 | NI-Sb | Prf-0 | Prf-Sb | GI/1euroDC | ME |
---|---|---|---|---|---|---|---|---|---|---|
GY | 0.97 *** | 0.56 ** | 0.77 *** | 0.61 ** | 0.91 *** | 0.91 *** | 0.67 *** | 0.61 *** | 0.44 * | 0.97 *** |
GI | 1.00 | 0.59 ** | 0.84 *** | 0.64 *** | 0.94 *** | 0.94 *** | 0.67*** | 0.60 ** | 0.43 * | 0.98 *** |
DC | 1.00 | 0.70 *** | 0.99 *** | 0.27 | 0.27 | −0.20 | −0.28 | −0.46 * | 0.49 * | |
IC | 1.00 | 0.75 *** | 0.69 *** | 0.69 *** | 0.35 | 0.28 | 0.12 | 0.83 *** | ||
TC | 1.00 | 0.32 | 0.32 | −0.14 | −0.22 | −0.41 * | 0.54 ** | |||
NI-0 | 1.00 | 1.00 | 0.88 *** | 0.84 *** | 0.72 *** | 0.96 *** | ||||
NI-Sb | 1.00 | 0.88 *** | 0.84 *** | 0.72 *** | 0.96 *** | |||||
Prf-0 | 1.00 | 0.99 *** | 0.96 *** | 0.74 *** | ||||||
Prf-sb | 1.00 | 0.98 *** | 0.68 *** | |||||||
GI/1euroDC | 1.00 | 0.53 ** |
Factor | Factor | GI | DC | IC | TC | NI-0 | NI-Sb | Prf-0 | Prf-Sb | UNIT DC | ME |
---|---|---|---|---|---|---|---|---|---|---|---|
Level | EUR ha−1 | % | EUR EUR−1 | EUR EUR−1 | |||||||
Year (Y) | 2014 | 191.1 | 200.9 | 171.7 | 190.8 | 191.7 | 175.6 | 102.1 | 93.2 | 96.3 | 204.1 |
2015 | 191.1 | 200.9 | 171.7 | 190.8 | 191.3 | 180.2 | 102.7 | 95.9 | 97.1 | 202.5 | |
Fungicide | FP-0 | 191.2 | 189.7 | 175.8 | 184.5 | 197.3 | 182.7 | 107.3 | 99.1 | 100.0 | 202.6 |
Protection (FP) | FP-F | 191.0 | 209.0 | 168.0 | 195.7 | 185.8 | 174.0 | 95.7 | 89.3 | 89.3 | 202.1 |
Nitrogen | 0 | 193.7 | 221.1 | 157.2 | 194.9 | 191.2 | 166.3 | 105.4 | 90.7 | 92.3 | 0.0 |
Rates kg N ha−1 | 40 | 193.7 | 212.8 | 166.3 | 194.9 | 192.4 | 176.7 | 97.3 | 89.5 | 87.5 | 205.8 |
(N) | 80 | 193.7 | 206.3 | 170.1 | 193.2 | 194.3 | 180.0 | 104.5 | 96.6 | 100.0 | 206.6 |
120 | 193.7 | 200.8 | 175.5 | 192.0 | 195.5 | 181.4 | 101.1 | 93.8 | 93.5 | 206.4 | |
160 | 188.6 | 196.3 | 176.0 | 189.6 | 187.7 | 176.4 | 102.0 | 95.7 | 100.0 | 201.3 | |
200 | 188.6 | 192.4 | 177.6 | 187.6 | 189.5 | 179.6 | 100.7 | 95.4 | 100.0 | 201.6 | |
240 | 188.6 | 188.9 | 178.4 | 185.7 | 191.2 | 181.0 | 105.2 | 99.5 | 103.2 | 201.5 |
Indicator | Regression Model | Year | Fungicide Protection | Indicator Value, EUR ha−1, % | N Optimum kg N ha−1 |
---|---|---|---|---|---|
Gross Income | Linear | 2015 | FP-0 | 1707.4 | 240 |
Linear | FP-F | 3335.1 | 240 | ||
Quadratic | 2022 | FP-0 | 3253.6 | 239.5 | |
Linear | FP-F | 4113.3 | 240 | ||
Net Income | Quadratic | 2015 | FP-0 | 925.0 | 211 |
Linear | FP-F | 1318.4 | 240 | ||
Quadratic | 2022 | FP-0 | 1833 | 231 | |
Linear | FP-F | 2210.8 | 240 | ||
Net profitability | Cubic | 2015 | FP-0 | 122.3% | 99.1 |
Linear | FP-F | 140% | 200 | ||
Cubic | 2022 | FP-0 | 138.2% | 119.9 | |
Linear | FP-F | 123% | 200 | ||
Unit DCproductivity | Cubic | 2015 | FP-0 | 3.68 | 77.3 |
Linear | FP-F | 3.10 | 200 | ||
Cubic | 2022 | FP-0 | 4.04 | 79 | |
Linear | FP-F | 3.12 | 200 |
Appendix B
References
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Le Mouël, C.; Forslund, A. How can we feed the world in 2050? A review of the responses from global scenario studies. Eur. Rev. Agric. Econ. 2017, 44, 541–591. [Google Scholar] [CrossRef]
- Röös, E.; Bajželj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M. Sulphur and Nitrogen Fertilization of Spring Wheat. Mineral Fertilization of Spring Wheat. Sarrbrucken, LAP Lambert Academic Publishing: Saarbrűcken, Germany, 2014; p. 122. ISBN 978-3-659-61515-3. [Google Scholar]
- Klikocka, H.; Marks, M. Sulphur and nitrogen fertilization as a potential means of agronomic biofortyfication to improve the content and uptake of microelements in spring wheat grain DM. J. Chem. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Klikocka, H.; Marks, M.; Barczak, B.; Szostak, B.; Podleśna, A.; Podleśny, J. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios. Open Chem. 2018, 16, 1059–1065. [Google Scholar] [CrossRef]
- Klikocka, H.; Podleśna, A.; Podleśny, J.; Narolski, B.; Haneklaus, S.; Bloem, E.; Schnug, E. Improvement of the Content and Uptake of Micronutrients in Spring Rye Grain DM Through Nitrogen and Sulfur Supplementation. Agronomy 2020, 10, 35. [Google Scholar] [CrossRef] [Green Version]
- Poutanewn, K.S.; Karlund, A.O.; Gomez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Gregory, P.J.; van Vuuren, D.; Obersteiner, M.; Havlík, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Phil. Trans. R. Soc. B 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L. Agriculture, plant physiology, and human population growth: Past, present, and future. Theor. Exp. Plant Physiol. 2013, 25, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is a core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Kotnis, K. Evaluation of nitrogen fertilization systems based on the in-season variability of the nitrogenous growth factors and soil fertility factors—A case of winter oil seed rape (Brassica napus L.). Agronomy 2020, 10, 1701. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J. Yield Predictive Worth of Pre-Flowering and Post-Flowering Indicators of Nitrogen Economy in High Yielding Winter Wheat. Agronomy 2023, 13, 122. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Jiang, Q. Food and water gaps to 2050: Preliminary results from the global food and water systems (GFWS) platform. Food Sec. 2015, 7, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Delivering food security without increasing pressure on land. Global Food Sec. 2013, 2, 18–23. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef] [Green Version]
- GUS. Rocznik Statystyczny Rzeczypospolitej Polskiej. Dział XVI. Rolnictwo—Statistical Yearbook of the Republic of Poland. Section XVI. Agriculture. Available online: http://www.stat.gov.pl (accessed on 15 January 2023).
- Nucia, A. Białka gluteninowe—Charakterystyka i ich wpływ na właściwości reologiczne pszenicy. Agron. Sci. 2018, 73, 5–16. [Google Scholar] [CrossRef]
- Rachoń, L.; Krochmal-Marczak, B.; Cebulak, T. Przydatność ziarna jarej pszenicy zwyczajnej, twardej i orkiszowej do produkcji pieczywa w zależności od intensywności technologii produkcji. Agron. Sci. 2020, 75, 25–36. [Google Scholar] [CrossRef]
- Bielski, S.; Budzyński, W.; Dubis, B.; Głąb, L.; Michalski, T.; Sowiński, J.; Szempliński, W. Rośliny Zbożowe. Cz. IV; Uprawa Roślin, T., II, Red Kotecki, A., Eds.; Wyd. UP: Wrocław, Poland, 2020; pp. 15–108. [Google Scholar]
- Schnitkey, G.; Paulson, N.; Zulauf, C.; Swansin, K.; Colussi, J.; Baltz, J. Nitrogen fertilizer prices and supply in light of the Ukraine-Russia conflict. Farmdocdaily 2022, 12, 45. [Google Scholar]
- Aday, S.; Aday, M.S. Impact of COVID-19 on the food supply chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Bentley, A.R.; Donovan, J.; Sonder, K.; Baudron, F.; Lewis, J.M.; Voss, R.; Rutsaert, O.; Poole, N.; Kamoun, S.; Saunders, D.G.O.; et al. Near-to long-term measures to stabilize global wheat supplies and food security. Nat. Food 2022, 3, 483–486. Available online: https://www.nature.com/natfood (accessed on 15 January 2023).
- UNCTAD. The Impact on Trade and Development of the War in Ukraine. UNCTAD Rapid Assesment. 16 March 2022. Available online: https://unctad.org/system/files/official-document/osginf2022d1_en.pdf (accessed on 15 January 2023).
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef]
- Dmowski, Z.; Dzieżyc, H.; Nowak, L. Ocena wpływu wybranych parametrów opadu i gleby na plonowanie pszenicy jarej w rejonie południowo-zachodnim Polski. Acta Agroph. 2008, 11, 613–622. [Google Scholar]
- Klikocka, H.; Cybulska, M.; Nowak, A. Efficiency of fertilization and utilization of nitrogen and sulphur by the spring wheat. Pol. J. Environ. Stud. 2017, 26, 2029–2036. [Google Scholar] [CrossRef]
- Available online: http://www.bioagrochem.pl/parametry-skupowe-zboz-konsumpcyjnych.html (accessed on 15 January 2023).
- Iwańska, M.; Paderwski, J.; Stępień, M.; Rodrigues, P.C. Adaptation of winter wheat cultivars to different environments: A case study in Poland. Agronomy 2020, 10, 632. [Google Scholar] [CrossRef]
- Ellmann, T. Wpływ poziomu ochrony roślin, nawożenia azotem i terminu zbioru na plonowanie pszenicy ozimej. Fragm. Agron. 2011, 28, 15–25. [Google Scholar]
- Sułek, A.; Podolska, G.; Leszczyńska, D.; Noworolnik, K. Reakcja zbóż na nawożenie azotem. Stud. I Rap. IUNG-PIB 2007, 9, 29–36. [Google Scholar]
- Podolska, G.; Sułek, A. Wpływ intensywności uprawy na plon i cechy struktury plonu odmian pszenicy ozimej. Pol. J. Agron. 2012, 11, 41–46. [Google Scholar]
- Cacak-Pietrzak, G.; Sułek, A. Wpływ poziomu nawożenia azotem na plonowanie i jakość technologiczną ziarna pszenicy jarej. Biul. IHAR 2007, 245, 47–55. [Google Scholar]
- Huber, D.M.; Haneklaus, S. Managing nutrition to control plant disease. LanbauforschungVölkenrode 2007, 4, 313–322. [Google Scholar]
- Piekarczyk, M.; Lemańczyk, G. Wpływ nawożenia azotem na zdrowotność wybranych odmian pszenicy ozimej uprawianych na glebie lekkiej. Prog. Plant Prot./PostępyW Ochr. Roślin 2013, 53, 494–497. [Google Scholar]
- Jaczewska-Kalicka, A. Grzyby patogeniczne dominujące w uprawie pszenicy ozimej w latach 1999–2001. Acta Agrobot. 2002, 55, 89–96. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Gutterdge, R.J. Effectsoftake-all (Gaeumannonycesgraminis var. tritici) on crop N uptake and residual mineral N in soil at harvest of winter wheat. Plant Soil 2012, 350, 253–260. [Google Scholar] [CrossRef]
- Figueoroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseaes—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef]
- Kulig, B.; Kania, S.; Szafrański, W.; Zając, T. Reakcja wybranych odmian pszenicy ozimej na intensywność uprawy. Biul. IHAR. 2001, 218/219, 117–126. [Google Scholar]
- Nowak, W.; Sowiński, J.; Pietr, S.; Kita, W. Wpływ sposobów ochrony pszenicy ozimej na jakość ziarna konsumpcyjnego. Pam. Puł. 2005, 139, 117–127. [Google Scholar]
- Zaima, O.A.; Derhachov, O.L. Yield and quality of soft winter wheat grain under different types of crops treating with fungicides. Plant Var. Stud. Prot. 2019, 15, 135–142. [Google Scholar]
- Borecki, Z.; Schollenberger, M. Polskie nazwy chorób roślin uprawnych. Pol. Tow. Fito. Wyd. 2 Uzup. 2017, 160, 96–100. [Google Scholar]
- Brachaczek, A.; Kaczmarek, J.; Niemann, J.; Jędryczka, M. Wpływ stosowania fungicydów w fazie T1 (BBCH 30–32) na zdrowotność i plonowanie pszenicy ozimej. Prog. Plant Prot./PostępyW Ochr. Roślin 2015, 55, 49–57. [Google Scholar]
- Kaniuczak, Z.; Noworól, M. Skuteczność oraz wskaźniki ekonomiczne chemicznego zwalczania szkodników i chorób w pszenicy ozimej na Podkarpaciu. Prog. Plant Prot./PostępyW Ochr. Roślin 2012, 52, 211–217. [Google Scholar]
- Nowak, A.; Haliniarz, M.; Kwiatkowski, C. Aspekty ekonomiczne wybranych technologii produkcji pszenicy jarej. Rocz. Nauk. SERiA 2013, 6, 200–205. [Google Scholar]
- Grabiński, J. Efekty produkcyjne i ekonomiczne intensywnej i integrowanej technologii produkcji pszenicy ozimej i jęczmienia jarego. Rocz. Nauk. SERiA 2015, 7, 94–99. [Google Scholar]
- Harasim, A. Wybrane elementy technologii produkcji roślinnej. In Kształtowanie Środowiska Rolniczego Polski Oraz Zrównoważony Rozwój Produkcji Rolniczej; Program wieloletni 2005–2010; Studia I Raporty IUNG PIB: Puławy, Poland, 2007; Volume 7. [Google Scholar]
- Harasim, A. Rachunek Ekonomiczny W Gospodarstwie Rolniczym; IUNG-PIB: Puławy, Poland, 2012; 30p. [Google Scholar]
- Harasim, E. Studia Nad Plonowaniem Jakością Ziarna i Opłacalnością Produkcji Ozimej Formy Pszenicy Zwyczajnej i Twardej; Wyd. IUNG-PIB: Puławy, Poland, 2018; 134p. [Google Scholar]
- Syp, A. Ocena efektywności ekonomicznej i środowiskowej uprawy pszenicy ozimej. Rocz. Nauk. SERiA 2015, 7, 314–318. [Google Scholar]
- PN-EN ISO 20483:2014-02; Cereal Grains and Pulses—Determination of Nitrogen Content and Conversion to Crude Protein—Kjeldah Method. Polski Komitet Normalizacyjny: Warsaw, Poland, 2015; 24p.
- Skarżyńska, A.; Ziętek, I. Standardowa nadwyżka bezpośrednia “2002” i zasady klasyfikacji gospodarstw rolnych według UE. ZagadnieniaEkon. Rolnej 2006, 1, 49. [Google Scholar]
- FADN. An A to Z of Methodology; Office for Official Publications of the European Communities: Luxemburg, 1989.
- Kamionka, J. Wpływ techniki na efektywność pogłównego nawożenia zbóż. Rozprawahabilitacyjna 19. InżynieriaRol 2005, 9, 43–57. [Google Scholar]
- Muzalewski, A. Koszty Eksploatacji Maszyn. IBMER: Warszawa, Poland, 2009. [Google Scholar]
- Chotkowski, J. Kalkulacje kosztów produkcji ziemniaków skrobiowych. Red. J. Chotkowski. WieśJutraWarszawa 2002, 47–53. [Google Scholar]
- Available online: https://www.topagrar.pl/notowania/zboza (accessed on 15 January 2023).
- Skarżyńska, A. Zagadnienia Metodyczne Rachunku Kosztów Ekonomicznych na Przykładzie Działalności Produkcji Roślinnej. IERGiŻ. 2010, p. 18. Available online: https//biobliotekanauki.pl/articles/879313.pdf (accessed on 15 January 2023).
- Klikocka, H.; Cybulska, M.; Barczak, B.; Narolski, B.; Szostak, B.; Kobiałka, A.; Nowak, A.; Wójcik, E. The effect of sulphur and nitrogen on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016, 62, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Oleksy, A.; Szmigiel, A.; Kołodziejczyk, M. Wpływ intensywności uprawy na zawartość i plon białka odmian pszenicy ozimej. Acta Sci. Pol. Agric. 2008, 7, 47–56. [Google Scholar]
- Gąsiorowska, B.; Makarewicz, A. Wpływ nawożenia azotowego na plonowanie pszenicy jarej. Ann. UMCS 2004, 59, 713–719. [Google Scholar]
- Gąsiorowska, B.; Makarewicz, A.; Nowosielska, A.; Rymuza, K. Efektywność produkcyjna nawożenia azotem różnych odmian pszenicy jarej. Pam. Puł. 2006, 142, 117–125. [Google Scholar]
- Kocoń, A. Nawożenie jakościowej pszenicy jarej i ozimej a plon i jakość ziarna. Pam. Puł. 2005, 139, 55–64. [Google Scholar]
- Sułek, A.; Mazurek, J. Wpływ podstawowych czynników agrotechnicznych na plon i cechy plonotwórcze nowych odmian pszenicy jarej. Biul. IHAR 2001, 220, 59–67. [Google Scholar]
- Doberman, A.R. Nitrogen Use Efficiency—State of the Art; Agronomy & Horticulture—Faculty Publications. University of Nenraska Lincoln, USA: 2005; Volume 316. Available online: https://digitalcommons.unl.edu/agronomyfacpub/316 (accessed on 15 January 2023).
- Grzebisz, W.; Niewiadomska, A.; Przygocka-Cyna, K. Nitrogen Hotspots on the Farm-A Practice-Oriented Approach. Agronomy 2022, 12, 1305. [Google Scholar] [CrossRef]
- Woźniak, A.; Nowak, A.; Gawęda, D. The Effect of the Three-Field Crop Rotation System and Cereal Monoculture on Grain Yield and Quality and the Economic Efficiency of Durum Wheat Production. Pol. J. Environ. Stud. 2021, 30, 5297–5305. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Chen, H.; Wang, D.; Nawaz, M.M.; Danso, F.; Chen, J.; Deng, A.; Song, Z.; Jamali, H.; et al. Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint. Agronomy 2022, 12, 848. [Google Scholar] [CrossRef]
- Enghiad, A.; Ufer, D.; Countryman, A.M.; Thilmany, D.D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns. Hindawi Int. J. Agron. 2017, 2017, 3931897. [Google Scholar] [CrossRef]
- Pan, W.L.; Kidwell, K.K.; McCracken, V.A.; Bolton, R.P.; Allen, M. Economically Optimal Wheat Yield, Protein and Nitrogen Use Component Responses to Varying N Supply and Genotype. Front. Plant Sci. 2020, 10, 1790. [Google Scholar] [CrossRef]
- Jarecki, W.; Bobrecka-Jamro, D.; Jarecka, A. Reakcja pszenicy jarej na zróżnicowane nawożenie azotowe oraz dokarmianie dolistne. Acta Agrophys. 2016, 23, 39–50. [Google Scholar]
Indicators | Indicator—Equation |
---|---|
Gross income—GI | |
Direct costs—DCs | |
Indirectcosts—ICs | |
Total costs—TCs | |
Net income, without subsidies—NI-0 | |
Net income, with subsidies—NI-Sb | |
Profitabilitywithoutsubsidies—Pfr-0 | |
Profitability withsubsidies—Pfr-Sb | |
Marginal efficiency—ME |
Factor | Factor | GY | PR | GL | PRY | GLY |
---|---|---|---|---|---|---|
Level | t ha−1 | % DW tha−1 | ||||
Year (Y) | 2014 | 8.790 b | 11.3 | 21.8 | 1.005 b | 1.945 b |
2015 | 10.958 a | 11.8 | 23.6 | 1.322 a | 2.650 a | |
p | *** | *** | *** | *** | *** | |
Fungicide | FP-0 | 9.195 b | 11.6 | 22.7 | 1.082 b | 2.133 b |
Protection (FP) | FP-F | 10.553 a | 11.6 | 22.7 | 1.246 a | 2.462 a |
p | *** | ns | ns | *** | *** | |
Nitrogen | 0 | 6.545 e | 9.7 e | 18.0 e | 0.636 f | 1.183 f |
Rates, kg N ha−1 | 40 | 8.993 d | 10.1 e | 19.0 de | 0.906 e | 1.714 e |
(N) | 80 | 10.026 c | 10.7 d | 20.3 d | 1.074 d | 2.051 d |
120 | 10.537 ab | 11.3 c | 22.0 c | 1.198 c | 2.332 c | |
160 | 10.664 a–c | 12.4 b | 24.7 b | 1.320 b | 2.640 b | |
200 | 11.050 ab | 13.2 a | 26.7 a | 1.461 a | 2.965 a | |
240 | 11.306 a | 13.7 a | 28.2 a | 1.550 a | 3.197 a | |
p | *** | *** | *** | *** | *** | |
Source of variation for interactions | ||||||
Y × FP | *** | * | ns | ** | * | |
Y × N | *** | ns | ns | *** | *** | |
FP × N | *** | ns | ns | ** | ** | |
Y × FP × N | ns | ns | ns | ns | ns |
Factor | Factor | GI | DC | IC | TC | NI-0 | NI-Sb | Prf-0 | Prf-Sb | UNIT DC EUR EUR−1 | ME |
---|---|---|---|---|---|---|---|---|---|---|---|
Level | EUR ha−1 | % | EUR EUR−1 | ||||||||
Year (Y) | 2014 | 1384.7 b | 513.8 | 273.0 | 786.8 | 597.9 b | 798.6 b | 74.9 b | 101.1 | 2.7 b | 9.7 b |
2015 | 1731.7 a | 513.8 | 273.0 | 786.8 | 944.8 a | 1145.5 a | 11908 a | 146.0 | 3.4 a | 15.7 a | |
p | *** | *** | *** | *** | *** | *** | *** | *** | |||
Fungicide | FP-0 | 1447.8 b | 430.5 b | 260.9 b | 691.4 b | 756.4 | 957.1 | 107.9 a | 137.5 a | 3.4 a | 11.5 a |
Protection (FP) | FP-F | 1668.6 a | 597.1 a | 285.1 a | 882.2 a | 786.3 | 987.0 | 86.7 b | 109.7 b | 2.8 b | 14.0 b |
p | *** | *** | *** | *** | ns | ns | *** | *** | *** | *** | |
Nitrogen | 0 | 962.6 g | 387.8 g | 264.4 c | 652.2 g | 310.4 e | 511.1 e | 49.8 d | 81.3 a | 2.6 b | 0.0 f |
Rates, kg N ha−1 | 40 | 1322.7 f | 429.8 f | 266.0 c | 696.3 f | 626.4 d | 827.1 d | 92.4 c | 121.8 b | 3.2 a | 8.6 e |
(N) | 80 | 1474.6 e | 471.8 e | 268.6 bc | 740.3 e | 734.2 cd | 934.9 cd | 102.3 c | 129.9 ab | 3.2 a | 12.2 d |
120 | 1549.8 d | 514.0 d | 272.6 b | 786.6 d | 763.2 bc | 963.9 bc | 98.5 bc | 124.4 b | 3.1 a | 14.0 cd | |
160 | 1693.6 c | 555.7 c | 274.7 b | 830.4 c | 863.1 b | 1063.8 b | 104.8 bc | 129.3 ab | 3.1 a | 15.6 bc | |
200 | 1929.6 b | 597.7 b | 281.2 a | 878.9 b | 1050.7 a | 1251.4 a | 119.6 a | 142.7 a | 3.2 a | 18.7 ab | |
240 | 1974.4 a | 639.7 a | 283.3 a | 923.0 a | 1051.4 a | 1252.1 a | 113.8 ab | 135.8 ab | 3.1 a | 19.8 a | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Source of variation for interactions | |||||||||||
Y × FP | *** | *** | *** | *** | *** | *** | *** | *** | |||
Y × N | *** | *** | *** | *** | *** | *** | *** | *** | |||
FP × N | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Y × FP × N | ns | Ns | ns | ns | ns | ns | ns | ns |
Factor | Factor | GI | DC | IC | TC | NI-0 | NI-Sb | Prf-0 | Prf-Sb | UNIT DC EUR EUR−1 | ME |
---|---|---|---|---|---|---|---|---|---|---|---|
Level | EUR ha−1 | % | EUR EUR−1 | ||||||||
Year (Y) | 2014 | 2647.0 b | 1032.2 a | 468.8 | 1501.0 | 1146.0 b | 1402.4 b | 76.5 b | 94.2 b | 2.6 b | 19.8 b |
2015 | 3308.6 a | 1032.2 a | 468.8 | 1501.0 | 1807.6 a | 2064.0 a | 122.3 a | 140.0 a | 3.3 a | 31.8 a | |
p | *** | *** | *** | *** | *** | *** | *** | ||||
Fungicide | FP-0 | 2767.8 b | 816.6 b | 458.7 b | 1275.4 b | 1492.5 | 1748.8 | 115.8 a | 136.2 a | 3.4 a | 23.3 b |
Protection (FP) | FP-F | 3187.8 a | 1247.7 a | 478.9 a | 1726.6 a | 1461.2 | 1717.5 | 83.0 b | 98.0 b | 2.5 b | 28.3 a |
p | *** | *** | *** | *** | ns | ns | *** | *** | *** | *** | |
Nitrogen | 0 | 1864.9 e | 855.8 g | 415.6 d | 1271.4 g | 593.5 d | 849.9 d | 52.5 d | 73.7 d | 2.4 d | 0.0 e |
Rates, kg N ha−1 | 40 | 2562.4 d | 914.8 f | 442.4 c | 1357.2 f | 1205.2 c | 1461.6 c | 89.9 c | 109.0 c | 2.8 c | 17.7 b |
(N) | 80 | 2856.7 c | 973.3 e | 456.9 c | 1430.2 e | 1426.5 b | 1682.9 b | 106.9 ab | 125.5 ab | 3.2 a | 25.2 c |
120 | 3002.4 bc | 1032.1 d | 478.4 bc | 1510.5 d | 1491.9 b | 1748.2 b | 99.6 bc | 116.7 bc | 2.9 bc | 28.9 c | |
160 | 3194.1 b | 1090.9 c | 483.5 b | 1574.4 c | 1619.7 b | 1876.1 b | 106.9 ab | 123.8 ab | 3.1 a | 31.4 bc | |
200 | 3639.8 a | 1149.7 b | 499.5 ab | 1649.2 b | 1990.6 a | 2247.0 a | 120.4 a | 136.1 a | 3.2 a | 37.7 ab | |
240 | 3724.2 a | 1208.5 a | 505.4 a | 1713.9 a | 2010.3 a | 2266.7 a | 119.7 a | 135.1 a | 3.2 a | 39.9 a | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Y × FP | *** | *** | ns | ns | *** | *** | *** | *** | *** | *** | |
Y × N | *** | *** | ns | ns | *** | *** | *** | *** | *** | *** | |
FP × N | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Y × FP × N | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klikocka, H.; Szczepaniak, W. Energy Crisis—Alternative Use of Winter Bread Wheat Grain Depending on Protein Content. Agronomy 2023, 13, 861. https://doi.org/10.3390/agronomy13030861
Klikocka H, Szczepaniak W. Energy Crisis—Alternative Use of Winter Bread Wheat Grain Depending on Protein Content. Agronomy. 2023; 13(3):861. https://doi.org/10.3390/agronomy13030861
Chicago/Turabian StyleKlikocka, Hanna, and Witold Szczepaniak. 2023. "Energy Crisis—Alternative Use of Winter Bread Wheat Grain Depending on Protein Content" Agronomy 13, no. 3: 861. https://doi.org/10.3390/agronomy13030861
APA StyleKlikocka, H., & Szczepaniak, W. (2023). Energy Crisis—Alternative Use of Winter Bread Wheat Grain Depending on Protein Content. Agronomy, 13(3), 861. https://doi.org/10.3390/agronomy13030861