Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers
Abstract
1. Introduction
2. Materials and Methods
2.1. Morphological Analysis
2.2. Sieving
2.3. Angle of Repose
2.4. Thermogravimetric Analysis (TGA)
2.5. Surface Area and Porosity Analysis
2.6. Energy-Dispersive X-ray Spectroscopy (EDS)
2.7. Fourier-Transform Infrared Spectroscopy Analysis (FTIR)
3. Results
3.1. Morphological Analysis
3.2. Particle Area
3.3. Sieving
3.4. Angle of Repose
3.5. Analysis of Surface Area and Porosity
3.6. Energy-Dispersive X-ray Spectroscopy (EDS) Analysis
3.7. Fourier-Transform Infrared Spectroscopy Analysis (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Plant Nutrition Institute. Cloruro de Potasio. Available online: http://www.ipni.net/publication/nss-es.nsf/0/A48F7C5B42D2D6BF85257BBA0059A849/$FILE/NSS-ES-03.pdf (accessed on 7 October 2022).
- Sanz, J.; Tomasa, O.; Jimenez-Franco, A.; Sidki-Rius, N. Potassium (K) [Z = 19]. Elem. Miner. Resour. 2022, 1, 167–169. [Google Scholar] [CrossRef]
- Sanz, J.; Tomasa, O.; Jimenez-Franco, A.; Sidki-Rius, N. Sylvite. Elem. Miner. Resour. 2022, 387–389. [Google Scholar] [CrossRef]
- Hernández Díaz, M.I.; Chailloux Laffita, M.; Moreno Placeres, V.; Ojeda Veloz, A.; Salgado Pulido, J.M.; Bruzón Guerrero, O. Relaciones Nitrógeno-Potasio En Fertirriego Para El Cultivo Protegido Del Tomate En Suelo Ferralítico Rojo. Pesqui. Agropecuária Bras. 2009, 44, 429–436. [Google Scholar] [CrossRef][Green Version]
- Choudhary, S.; Singh, A.; Rani, M. Role of Potassium in Plants. Mag. Agric. 2022, 1, 76–79. [Google Scholar]
- Mikkelsen, R.L.; Roberts, T.L. Inputs: Potassium Sources for Agricultural Systems. In Improving Potassium Recommendations for Agricultural Crops; Springer: Cham, Switzerland, 2020; pp. 47–73. [Google Scholar] [CrossRef]
- Livi Bacci, M. Historia Mínima de La Población Mundial; Crítica: Barcelona, Spain, 2009. [Google Scholar]
- Lobo, M. Importancia de Los Recursos Genéticos de La Agrobiodiversidad En El Desarrollo de Sistemas de Producción Sostenibles. Cienc. Tecnol. Agropecu. 2009, 9, 19–30. [Google Scholar] [CrossRef]
- Oswaldo Benavides, H.; Mayorga Márquez, R.; Hurtado Moreno, G. Análisis de Índices de Extremos Climáticos Para Colombia Usando El RCLIMDEX; IDEAM–METEO/007-2007; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2007. [Google Scholar]
- Zamorio, M.J.; Peña, E.; López, C.; Silva, T. Efectos de La Sequía Y Del Cambio Climático En Los Recursos Hídricos Y En La Seguridad Alimentaria de Cinco Comunidades Del Municipio de Ciudad Darío, Matagalpa. Cuad. Investig. 2017, 1, 9–38. [Google Scholar]
- Soliveres, S. Efectos Del Estrés Abiótico Y Factores Bióticos En Las Interacciones Planta-Planta: Implicaciones Para El Funcionamiento Y La Restauración de Los Ecosistemas Semiáridos. Ecosistemas 2011, 20, 121–128. [Google Scholar]
- Martínez Castizo, D. La silvinita. Available online: https://diario16.com/la-silvinita/ (accessed on 7 October 2022).
- Kant, S.; Kafkafi, U. Absorción de Potasio Por Los Cultivos En Distintos Estadios Fisiológicos. (En Línea). In Proceedings of the Internacional Potash Institute Annual Conference, Hebrew University, Rehovot, Israel, 5 July 2000; Potasio en Plantas y Animales. pp. 263–302. [Google Scholar]
- Singh, T.A.; Thomas, G.W.; Moschler, W.W.; Martens, D.C. Phosphorus Uptake by Corn (Zea mays L.) under No-Tillage and Conventional Practices. Agron. J. 1966, 58, 147–148. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Li, R.; Liu, C.; Jiao, P.; Liu, W.; Wang, S. The Present Situation, Existing Problems, and Countermeasures for Exploitation and Utilization of Low-Grade Potash Minerals in Qarhan Salt Lake, Qinghai Province, China. Carbonates Evaporites 2020, 35, 34. [Google Scholar] [CrossRef]
- Soumare, A.; Sarr, D.; Diédhiou, A.G. Potassium Sources, Microorganisms, and Plant Nutrition—Challenges and Future Research Directions: A Review. Pedosphere, 2022; In Press. [Google Scholar] [CrossRef]
- Jena, S.K. A Review on Potash Recovery from Different Rock and Mineral Sources. Min. Metall. Explor. 2021, 38, 47–68. [Google Scholar] [CrossRef]
- Gonzales, O. ¿Para qué Sirve el Potasio?, Propiedades y Beneficios. 2018. Available online: https://laguiadelasvitaminas.com/para-que-sirve-el-potasio/ (accessed on 7 October 2022).
- Warren, J.K. Geological controls on the quality of potash. In Proceedings of the 8th World Salt Symposium, The Hague, The Netherlands, 7—11 May 2000; Elsevier: Amsterdam, The Netherlands, 2000; pp. 173–180. [Google Scholar]
- Stewart, J.A. Potassium Sources, Use, and Potential. Potassium Agric. 2015, 1, 83–98. [Google Scholar] [CrossRef]
- Kraus, H.; Hunt, F.; Ramsdell, S.; Navarro, A. Mineralogía: Una Introducción al Estudio de Minerales y Cristales, 5th ed.; Ediciones del Castillo: Madrid, España, 1965. [Google Scholar]
- ASTM C1444-00; Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Rodas, R.; Rousé, P. Análisis Comparativo de Métodos Para La Medición Del Ángulo de Reposo de Suelos Granulares. Rev. la Construcción 2010, 9, 98–106. [Google Scholar] [CrossRef][Green Version]
- Maldonado Uría, P.; Pino Vargas, E. Influencia Del Tipo de Material, Superficie de Contacto Y Altura de Almacenaje Sobre El Ángulo de Reposo, En Materiales Granulares. Cienc. Desarro. 2019, 18, 22–31. [Google Scholar] [CrossRef]
- De Araujo, A.C.; Valadão, G.E.S.; Da Gama, E.M.; Hernandez, C.A. Consistencia, Fluidez Y Viscosidad de Pastas Minerales de Relaves de Hierro. Inf. Tecnol. 2006, 17, 71–79. [Google Scholar] [CrossRef]
- Mikkelsen, R.L. Managing Potassium for Organic Crop Production. HortTechnology 2007, 17, 455–460. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and Their Diverse Role in Agricultural Crops: Advances and Future Prospective. Acta Physiol. Plant. 2015, 37, 139. [Google Scholar] [CrossRef]
- Aftab, T.; Hakeem, K.R. Plant Micronutrients: Deficiency and Toxicity Management; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients. Marschner’s Miner. Nutr. High. Plants 2012, 3, 191–248. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Jarvis, S. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press, Cop: Cambridge, UK, 2005. [Google Scholar]
- Small, J.A. The Analysis of Particles at Low Accelerating Voltages (<= 10 KV) with Energy Dispersive X-Ray Spectroscopy (EDS). J. Res. Natl. Inst. Stand. Technol. 2002, 107, 555. [Google Scholar] [CrossRef]
- ASTM C136; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials: West Conshohocken, PA, USA, 2000.
- Ruiz, M.E. métodos de análisis térmico. In Análisis Farmacéutico; 1st, ed, Guillermina-Volonté, M., Quiroga, P., Eds.; Universidad Nacional de La Plata: Buenos Aires, Argentina, 2013; p. 159. [Google Scholar]
- Train, D. Some Aspects of The Property of Angle Of Repose Of Powders. J. Pharm. Pharmacol. 1958, 10 (Suppl. 1), 127T–135T. [Google Scholar] [CrossRef] [PubMed]
- Contreras Pérez, J.B.; Araujo, A.L.; Fernández, R.E.; Santos Ortiz, R.D.L. Variaciones En El Equilibrio de Adsorción Según El Tamaño de Partícula Adsorbente. Cienc. Soc. 1992, 17, 52–59. [Google Scholar] [CrossRef][Green Version]
- Sands, D. Introducción a la Cristalografía; Reverteé: Barcelona, Spain, 2011. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Henry, J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Mi-croanalysis; Springer: New York, NY, USA, 2018. [Google Scholar]
- Sharpe, S.W.; Reifschneider, D.; Wittig, C.; Beaudet, R.A. Infrared Absorption Spectroscopy of the CO2–Ar complex in the 2376 Cm−1 Combination Band Region: The Intermolecular Bend. J. Chem. Phys. 1991, 94, 233–238. [Google Scholar] [CrossRef]
- Moore, G.; Chizmeshya, A.; McMillan, P.F. Calibration of a Reflectance FTIR Method for Determination of Dissolved CO2 Concentration in Rhyolitic Glasses. Geochim. Cosmochim. Acta 2000, 64, 3571–3579. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian J. Sci. Technol. 2019, 4, 97. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
Area (mm2) | |||
---|---|---|---|
Sample | Minimum | Medium | Maximum |
Problema | 0.0754 | 0.2616 | 31.150 |
Blanco | 0.0575 | 0.5112 | 51.075 |
BPC | 0.0240 | 0.3484 | 31.086 |
Bueno | 0.0675 | 0.6438 | 50.838 |
Mesh Opening (mm) | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
2.000 | 1.9 | 5.0 | 1.0 | 1.0 |
1.000 | 21.6 | 41.0 | 7.1 | 37.0 |
0.500 | 48.7 | 42.3 | 42.0 | 53.4 |
0.355 | 15.6 | 11.3 | 33.6 | 7.5 |
0.212 | 11.7 | 0.3 | 15.1 | 1.0 |
0.150 | 0.3 | 0.0 | 1.2 | 0.0 |
0.106 | 0.0 | 0.0 | 0.0 | 0.0 |
Angle of Repose (θ) | ||||
---|---|---|---|---|
Funnel Height (cm) | Blanco | Problema | BPC | Bueno |
10 | 24.9 | 26.8 | 29.0 | 32.2 |
20 | 25.0 | 28.4 | 29.1 | 30.5 |
30 | 24.1 | 27.8 | 25.3 | 30.3 |
Average | 24.7 | 27.7 | 27.8 | 31.0 |
Free moisture (%) | 0.9 | 0.5 | 0.3 | 1.35 |
Parameter | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
Single Point Surface Area in P/Po | 0.159581639: 0.0080 m2/g | 0.159589767: 0.0312 m2/g | 0.299581172: 0.4332 m2/g | 0.299708541: 0.9995 m2/g |
BET Surface Area | 0.0066 m2/g | 0.0232 m2/g | 0.4552 m2/g | 1.2411 m2/g |
Langmuir Surface Area | 0.2137 m2/g | 0.0223 m2/g | 0.7572 m2/g | 2.4290 m2/g |
Micro Pore Area t-Plot | 0.7765 m2/g | 0.9200 m2/g | 0.0195 m2/g | |
External Surface Area t-Plot | 0.7699 m2/g | −0.8968 m2/g | 0.4357 m2/g | 2.0497 m2/g |
Pore Volume: Micro Pore Volume t-Plot | 0.000327 cm3/g | 0.000382 cm3/g | 0.000037 cm3/g | 0.000475 cm3/g |
Nanoparticle Size: Mean Particle Size | 9052430.914 Å | 2591285.485 Å | 131802.986 Å | 48345.286 Å |
Element | Blanco | Problema | BPC | Bueno |
---|---|---|---|---|
Be | 10.67 | - | - | - |
O | 2.86 | 9.57 | 12.20 | 12.86 |
Na | 0.78 | 1.10 | 0.87 | 1.76 |
Mg | 0.18 | 0.42 | 0.56 | 1.17 |
Si | 0.13 | 1.02 | 1.29 | 0.21 |
Cl | 44.95 | 42.84 | 41.22 | 43.77 |
K | 40.44 | 41.84 | 38.86 | 40.04 |
Al | - | 0.48 | 0.60 | 0.19 |
Mo | - | 0.88 | 1.30 | - |
Fe | - | 1.80 | 2.74 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Suarez, J.R.; Colpas-Castillo, F.; Taron-Dunoyer, A. Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy 2023, 13, 52. https://doi.org/10.3390/agronomy13010052
Castro-Suarez JR, Colpas-Castillo F, Taron-Dunoyer A. Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy. 2023; 13(1):52. https://doi.org/10.3390/agronomy13010052
Chicago/Turabian StyleCastro-Suarez, John R., Fredy Colpas-Castillo, and Arnulfo Taron-Dunoyer. 2023. "Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers" Agronomy 13, no. 1: 52. https://doi.org/10.3390/agronomy13010052
APA StyleCastro-Suarez, J. R., Colpas-Castillo, F., & Taron-Dunoyer, A. (2023). Chemical and Morphologic Characterization of Sylvite (KCl) Mineral from Different Deposits Used in the Production of Fertilizers. Agronomy, 13(1), 52. https://doi.org/10.3390/agronomy13010052