Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Experimental Design
2.2. Crop Management
2.3. Sampling Procedures and Measurements
- -
- When barley reached the green forage stage (beginning of heading—BBCH 51), while correspondingly field bean was at first pods visible (BBCH 70): on 21 and 20 April, respectively in 2015 and 2016;
- -
- When barley reached the silage stage (early dough—83), with field bean at final pods development (BCCH 79): on 10 May 2015 and 4 May 2016.
2.4. Indices of Intercropping Performance
component
- LERB and LERF are the partial LERs of barley (B) and field bean (F);
- YBF is the dry matter production of intercropped barley;
- YFB is the dry matter production of intercropped field bean;
- YB and YF are the dry matter production of barley and field bean sole crops, respectively.
- CRB and CRF are the competitive ratios of barley (B) and field bean (F), respectively;
- ZBF and ZFB are the proportions of barley and field bean in the intercropping system, respectively.
- YBF, YFB, YB, and YF are the dry matter productions as defined above for LER;
- ZBF and ZFB are the proportions of barley and field bean in the intercropping system, respectively;
- AB and AF are barley and field bean aggressivity, respectively.
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Year Effect on Forage and Grain Production
3.3. Response of Component Crops to Intercropping: Forage Production
3.3.1. Barley
3.3.2. Field Bean
3.4. Intercropping Performance: Forage Production
3.5. Response of Component Crops to Intercropping: Grain Production
3.5.1. Barley
3.5.2. Field Bean
3.5.3. Intercropping Performance for Grain Production
3.6. Response of Component Crops: Forage Production at Different Harvesting Stages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Millennium Ecosystem Assessment (Program). Ecosystems and Human Well-Being: General Synthesis; World Resources Institute, Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050. Final Report; WRI: Washington, DC, USA, 2019. [Google Scholar]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhatarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Chang. Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Ofori, F.; Stern, W.R. Cereal-legume intercropping systems. Adv. Agron. 1987, 41, 41–90. [Google Scholar]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; De Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2008, 29, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, A.L.; Kirkegaard, J.A.; Peoples, M.B.; Robertson, M.J.; Whish, J.; Swan, A.D. Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems. Crop Pasture Sci. 2016, 67, 1252–1267. [Google Scholar] [CrossRef]
- Padulosi, S.; Hodgkin, T.; Williams, J.T.; Haq, N. Underutilized crops: Trends, challenges and opportunities in the 21st century. In Managing Plant Genetic Resources; Engels, J.M.M., Ramanatha, R.V., Brown, A.H.D., Jackson, M.T., Eds.; CAB International: Wallingford, UK, 2002; pp. 323–338. [Google Scholar]
- Banik, P.; Midya, A.; Sarkar, B.; Ghose, S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Lithourgidis, A.; Dordas, C.; Damalas, C.A.; Vlachostergios, D. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Eric Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Devel. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Anil, L.; Park, J.; Phipps, R.H.; Miller, F.A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 1998, 53, 301–317. [Google Scholar] [CrossRef]
- Voisin, A.S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.H.; Magrini, M.B.; Meynard, J.M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Devel. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindström, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain legume production and use in European agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar]
- Dhima, K.V.; Lithourgidis, A.; Vasilakoglou, I.B.; Dordas, C. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Sulas, L.; Roggero, P.P.; Canu, S.; Seddaiu, G. Potential nitrogen source from field bean for rainfed Mediterranean cropping systems. Agron. J. 2013, 105, 1735–1742. [Google Scholar] [CrossRef]
- Mariotti, M.; Andreuccetti, V.; Arduini, I.; Minieri, S.; Pampana, S. Field bean for forage and grain in short-season rainfed Mediterranean conditions. Ital. J. Agron. 2018, 13, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Pampana, S.; Masoni, A.; Arduini, I. Response of cool-season grain legumes to waterlogging at flowering. Can. J. Plant Sci. 2016, 96, 597–603. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Optimizing forage yield of durum wheat ⁄ field bean intercropping through N fertilization and row ratio. Grass Forage Sci. 2011, 67, 243–254. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, E.; de Sousa, D.O.; Magnusson, A.; Hedlund, S.; Richardt, W.; Nørgaard, P. Digestibility and protein utilization in wethers fed whole-crop barley or grass silages harvested at different maturity stages, with or without protein supplementation. J. Anim. Sci. 2019, 97, 2188–2201. [Google Scholar] [CrossRef] [PubMed]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Barley, oat, and cereal pea mixtures as dryland forages in the Northern Great Plains. Agron. J. 2004, 96, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Köpke, U.; Nemecek, T. Ecological services of faba bean. Field Crops Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dhima, K.V.; Vasilakoglou, I.B.; Dordas, C.A.; Yiakoulaki, M.D. Sustainable production of barley and wheat by intercropping common vetch. Agron. Sustain. Dev. 2007, 27, 95–99. [Google Scholar] [CrossRef]
- Getachew, A.; Amare, G.; Woldeyesus, S. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian high lands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar]
- Willey, R.W. Intercropping—Its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstr. 1979, 31, 1–84. [Google Scholar]
- Odo, P.E. Evaluation of short and tall sorghum varieties in mixtures with cowpea in the Sudan savanna of Nigeria: Land equivalent ratio, grain yield and system productivity index. Exp. Agric. 1991, 27, 435–441. [Google Scholar] [CrossRef]
- Galanopoulou, K.; Lithourgidis, A.S.; Dordas, C.A. Intercropping of faba bean with barley at various spatial arrangements affects dry matter and N yield, nitrogen nutrition index, and interspecific competition. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1116–1127. [Google Scholar]
- Workayehu, T.; Hidoto, L.; Loha, G. Grain yield and economic benefit of intercropping barley and faba bean in the Highlands of Southern Ethiopia. East Afr. J. Sci. 2016, 10, 103–110. [Google Scholar]
- Searle, P.G.E.; Comudon, S.; Shedden, D.C.; Nance, R.A. Effect of maize + legume intercropping systems and fertilizer nitrogen on crop yields and residual nitrogen. Field Crops Res. 1981, 4, 133–145. [Google Scholar] [CrossRef]
- Baker, C.M.; Blamey, F.P.C. Nitrogen fertilizer effects on yield and nitrogen uptake of sorghum and soybean, grown in sole cropping and intercropping systems. Field Crops Res. 1985, 12, 233–240. [Google Scholar] [CrossRef]
- Ofori, F.; Stern, W.R. Maize/cowpea intercrop system: Effect of nitrogen fertilizer on productivity and efficiency. Field Crops Res. 1986, 14, 247–261. [Google Scholar] [CrossRef]
- Pilbeam, C.J.; Wood, M.; Mugane, P.G. Nitrogen use in maize-grain legume cropping systems in semi-arid Kenya. Biol. Fertil. Soils 1995, 20, 57–62. [Google Scholar] [CrossRef]
- Siame, J.; Willey, R.W.; Morse, S. The response of maize Phaseolus intercropping to applied nitrogen on Oxisol in northern Zambia. Field Crops Res. 1998, 55, 73–81. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilization management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. [Google Scholar] [CrossRef]
- Van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res. 2002, 65, 165–181. [Google Scholar] [CrossRef]
- Peoples, M.; Bowman, A.; Gault, R.; Herridge, D.F.; McCallum, M.H.; McCormick, K.M.; Norton, R.M.; Rochester, I.J.; Scammel, G.J.; Scwenke, G.D. Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant Soil 2001, 228, 29–41. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Mariotti, M.; Ercoli, L.; Arduini, I. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exper. Agric. 2018, 54, 66–82. [Google Scholar]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; Van Der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Zhang, F. Crop mixtures and the mechanisms of overyielding. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 2. [Google Scholar]
- Snaydon, R.W. Replacement or additive designs for competition studies? J. Appl. Ecol. 1994, 28, 930–946. [Google Scholar] [CrossRef]
- Federer, W.T. Statistical Design and Analysis for Intercropping Experiments: Volume 1: Two Crops; Springer: Berlin, Germany, 2012. [Google Scholar]
- Meier, U. BBCH-Monograph: Growth Stages of Mono-and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Quedlinburg, Germany, 2001; pp. 18–23. [Google Scholar]
- Raggi, L.; Negri, V.; Ceccarelli, S. Morphological diversity in a barley composite cross-derived population evolved under low-input conditions and its relationship with molecular diversity: Indications for breeding. J. Agric. Sci. 2016, 154, 943–959. [Google Scholar] [CrossRef]
- Tudisco, R.; Calabrò, S.; Terzi, V.; Piccolo, V.; Guglielmelli, A.; Infascelli, F. In vitro fermentation of ten cultivars of barley silage. Ital. J. Anim. Sci. 2009, 8, 343–345. [Google Scholar] [CrossRef]
- Willey, R.; Rao, M. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- Mc-Gilchrist, C.A. Analysis of competition on experiments. Biometrics 1965, 21, 975–985. [Google Scholar] [CrossRef]
- Amanullah, S.K.; Khalil, I.F. Influence of irrigation regimes on competition indexes of winter and summer intercropping system under semi-arid regions of Pakistan. Sci. Rep. 2020, 10, 8129. [Google Scholar] [CrossRef]
- Canisares, L.P.; Poffenbarger, H.; Brodie, E.L.; Sorensen, P.O.; Karaoz, U.; Villegas, D.M.; Arango, J.; Momesso, L.; Crusciol, C.A.C.; Cantarella, H. Legacy effects of intercropping and nitrogen fertilization on soil N cycling, nitrous oxide emissions, and the soil microbial community in tropical maize production. Front. Soil Sci. 2021, 1, 746433. [Google Scholar] [CrossRef]
- Bacchi, M.; Monti, M.; Calvi, A.; Lo Presti, E.; Pellicanò, A.; Preiti, G. Forage potential of cereal/legume intercrops: Agronomic performances, yield, quality forage and LER in two harvesting times in a Mediterranean environment. Agronomy 2021, 11, 121. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, L.; Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 2004, 262, 45–54. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant Soil 2011, 330, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Pelzer, E.; Hombert, N.; Jeuffroy, M.H.; Makowski, D. Meta-Analysis of the Effect of Nitrogen Fertilization on Annual Cereal–Legume Intercrop Production. Agron. J. 2014, 106, 1775–1786. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Strydhorst, S.M.; King, J.R.; Lopetinsky, K.J.; Harker, K.N. Forage potential of intercropping barley with faba bean, lupin, or field pea. Agron. J. 2008, 100, 182–190. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A. Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Sci. 2010, 50, 2148–2158. [Google Scholar] [CrossRef]
- Caballero, A.R.; Goicoechea, E.L.; Hernaiz, P.J. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crops Res. 1995, 41, 135–140. [Google Scholar] [CrossRef]
- Neumann, A.; Schmidtke, K.; Rauber, R. Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Res. 2007, 100, 285–293. [Google Scholar] [CrossRef]
- Maitra, S.; Palai, J.B.; Manasa, P.; Kumar, D.P. Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Bio-Res. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Martin, M.P.L.D.; Snaydon, R.W. Root and shoot interactions between barley and field beans when intercropped. J. Appl. Ecol. 1982, 19, 263–272. [Google Scholar] [CrossRef]
- Snaydon, R.W.; Harris, P.M. Interactions belowground—The use of nutrients and water. In Proceedings of the International Workshop on Intercropping, Hyderabad, India, 10–13 January 1979; Willey, R.W., Ed.; ICRISAT: Patancherou, India, 1979; pp. 188–201. [Google Scholar]
- Gou, F.; van Ittersum, M.K.; Wang, G.; van der Putten, P.E.; van der Werf, W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur. J. Agron. 2016, 76, 17–27. [Google Scholar] [CrossRef]
- Chen, J.; Engbersen, N.; Stefan, L.; Schmid, B.; Sun, H.; Schöb, C. Diversity increases yield but reduces harvest index in crop mixtures. Nat. Plants. 2021, 7, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Tan, Y.; Yu, A.; Zhao, C.; Coulter, J.A.; Fan, Z.; Yin, W.; Fan, H.; Chai, Q. Low N fertilizer application and intercropping increases N concentration in pea (Pisum sativum L.) grains. Front Plant Sci. 2018, 9, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layek, J.; Das, A.; Mitran, T.; Nath, C.; Meena, R.S.; Yadav, G.S.; Shivakumar, B.G.; Kumar, S.; Lal, R. Cereal+Legume Intercropping: An option for improving productivity and sustaining soil health. In Legumes for Soil Health and Sustainable Management; Meena, R., Das, A., Yadav, G., Lal, R., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 2001, 71, 185–196. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P. Nitrogen uptake, use and utilization efficiency by oat–pea intercrops. Field Crops Res. 2015, 179, 113–119. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci. 2009, 64, 401–412. [Google Scholar] [CrossRef]
- Papastylianou, I. Effect of rotation system and N fertilizer on barley and vetch grown in various crop combinations and cycle lengths. J. Agric. Sci. 2004, 142, 41–48. [Google Scholar] [CrossRef]
- Pursiainen, P.; Tuori, M. Effect of ensiling field bean, field pea and common vetch in different proportions with whole-crop wheat using formic acid or an inoculant on fermentation characteristics. Grass Forage Sci. 2008, 63, 60–78. [Google Scholar] [CrossRef]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Aust. J. Plant Physiol. 2000, 27, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Eziz, A.; Tian, D.; Li, X.; Hou, X.; Peng, H.; Han, W.; Guo, Y.; Fang, J. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana. Front Plant Sci. 2019, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, S. Establishment and growth of a sequence of crops in a permanent legume base. In Proceedings of the Fourth National Livestock Improvement Conference, Addis Abeba, Ethiopia, 13–15 November 1991; Institute of Agricultural Research: Addis Abeba, Ethiopia, 1993; pp. 193–200. [Google Scholar]
- Connolly, H.C.; Goma, K.R. The information content of indicators in intercropping research. Agric. Ecosyst. Environ. 2001, 87, 191–207. [Google Scholar] [CrossRef]
- Baron, V.S.; Najda, H.G.; Salmon, D.F.; Dick, A.C. Post-flowering forage potential of spring and winter cereal mixtures. Can. J. Plant Sci. 1992, 72, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Pampana, S.; Masoni, A.; Arduini, I. Grain legumes differ in nitrogen accumulation and remobilization during seed filling. Acta Agric. Scand. B Soil Plant Sci. 2016, 66, 127–132. [Google Scholar]
Crop | Barley | Field Bean | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organ | Leaves | Stems | Inflorescences | Leaves | Stems | Inflorescences | ||||||
Treatment | Cropping system * | |||||||||||
SC | 19.4 | b | 58.5 | a | 22.1 | a | 30.7 | a | 61.9 | b | 7.4 | a |
IC | 25.3 | a | 55.5 | b | 19.2 | b | 29.0 | b | 63.2 | a | 7.9 | a |
Nitrogen rate ** | ||||||||||||
0 | 24.1 | a | 58.3 | a | 17.5 | c | 30.3 | a | 60.2 | c | 9.4 | a |
50 | 21.0 | bc | 58.2 | a | 20.9 | b | 30.0 | a | 62.2 | b | 7.7 | b |
100 | 19.8 | c | 57.1 | b | 23.1 | a | 29.8 | a | 62.7 | ab | 7.4 | bc |
150 | 22.8 | ab | 55.7 | cd | 21.4 | ab | 29.3 | a | 63.5 | ab | 7.2 | bc |
200 | 23.9 | a | 55.5 | d | 20.5 | b | 29.7 | a | 63.9 | a | 6.3 | c |
Crop | Barley | Field Bean | Total LER | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N Rate | LER | A | CR | LER | A | CR | ||||||||
0 | 1.02 | a | 0.22 | a | 1.29 | a | 0.80 | a | −0.22 | c | 0.81 | c | 1.83 | a |
50 | 0.75 | b | 0.01 | b | 1.02 | b | 0.74 | a | −0.01 | b | 0.99 | b | 1.49 | b |
100 | 0.63 | c | 0.02 | b | 1.04 | b | 0.61 | a | −0.02 | b | 0.96 | b | 1.24 | c |
150 | 0.64 | c | −0.09 | c | 0.88 | c | 0.72 | a | 0.09 | a | 1.14 | a | 1.36 | c |
200 | 0.53 | d | −0.10 | c | 0.84 | c | 0.63 | a | 0.10 | a | 1.21 | a | 1.17 | c |
Barley | Field Bean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cropping System | Spikes | Mean Grain Weight | Pods | Grains | Mean Grain Weight | |||||
n m−2 | mg | n m−2 | n pod−1 | mg | ||||||
SC | 501.3 | a | 41.8 | a | 436 | a | 2.31 | a | 272.8 | b |
IC | 362.3 | b | 35.7 | b | 341 | b | 1.97 | b | 296.5 | a |
Crop | Barley | Field Bean | Total LER | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N Rate | LER | A | CR | LER | A | CR | ||||||||
0 | 0.78 | a | 0.00 | a | 1.00 | a | 0.79 | a | 0.00 | a | 1.00 | c | 1.92 | a |
50 | 0.45 | b | −0.39 | c | 0.54 | b | 0.84 | a | 0.39 | c | 1.87 | ab | 1.54 | b |
100 | 0.38 | bc | −0.33 | bc | 0.54 | b | 0.71 | a | 0.33 | bc | 1.86 | ab | 1.28 | bc |
150 | 0.33 | c | −0.43 | c | 0.44 | b | 0.76 | a | 0.43 | c | 2.29 | a | 1.08 | c |
200 | 0.34 | c | −0.20 | b | 0.63 | b | 0.54 | a | 0.20 | b | 1.60 | b | 0.93 | c |
Harvesting Stage * | Leaves | Stems | Inflorescences | |||
---|---|---|---|---|---|---|
Total forage | ||||||
Heading | 29.1 | a | 62.6 | a | 8.2 | b |
Early dough | 23.4 | b | 56.9 | b | 19.7 | a |
Barley | ||||||
Heading | 26.2 | a | 59.2 | a | 14.6 | b |
Early dough | 18.5 | b | 54.7 | b | 26.8 | a |
Field bean | ||||||
Heading | 31.8 | a | 65.7 | a | 2.5 | b |
Early dough | 27.9 | b | 59.4 | b | 12.7 | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampana, S.; Arduini, I.; Andreuccetti, V.; Mariotti, M. Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy 2022, 12, 418. https://doi.org/10.3390/agronomy12020418
Pampana S, Arduini I, Andreuccetti V, Mariotti M. Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy. 2022; 12(2):418. https://doi.org/10.3390/agronomy12020418
Chicago/Turabian StylePampana, Silvia, Iduna Arduini, Victoria Andreuccetti, and Marco Mariotti. 2022. "Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments" Agronomy 12, no. 2: 418. https://doi.org/10.3390/agronomy12020418
APA StylePampana, S., Arduini, I., Andreuccetti, V., & Mariotti, M. (2022). Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy, 12(2), 418. https://doi.org/10.3390/agronomy12020418