Mapping of Two New Rust Resistance Genes Uvf-2 and Uvf-3 in Faba Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Development of RIL Populations
2.2. Pathogen Material and Inheritance Studies
2.3. DNA and RNA Extraction
2.4. Genotyping-by-Sequencing and SNP Discovery
2.5. Construction of Linkage Map
2.6. KASP Genotyping
3. Results
3.1. Genetic Analysis
3.2. Molecular Mapping of Rust Resistance
3.2.1. Construction of Linkage Maps
3.2.2. Mapping of Uvf-2
3.2.3. Mapping of Uvf-3
3.3. Validation of KASP Markers
3.3.1. Uvf-2
3.3.2. Uvf-3
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cubero, J.I. Evolutionary trends in Vicia faba L. Theor. Appl. Genet. 1973, 43, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cubero, J.I. On the evolution of Vicia faba L. Theor. Appl. Genet. 1974, 45, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Maxted, N.; Callimassia, M.; Bennett, M. Cytotaxonomic studies of Eastern mediterranean Vicia species (Leguminosae). Plant Syst. Evol. 1991, 177, 221–234. [Google Scholar] [CrossRef]
- FAOSTAT. World Statistics on Faba Bean; FAO: Rome, Italy, 2017; Available online: http://faostat.fao.org/ (accessed on 25 March 2021).
- Ijaz, U.; Adhikari, K.N. Understanding genetics of seedling rust resistance in faba bean. In Proceedings of the Australian Pulse Conference, Tamworth, NSW, Australia, 12–14 September 2016; pp. 21–22. [Google Scholar]
- Pulse-Australia. The Australian Industry Faba Bean (Pulse.com.au); PBA-Australia: Barton, ACT, Australia, 2016. [Google Scholar]
- Chen, Y.X.; Zou., L.; Penttinen, P.; Chen, Q.; Li, Q.Q.; Wang, C.Q.; Xu, K.W. Faba Bean (Vicia faba L.) nodulating Rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front. Microbiol. 2016, 9. [Google Scholar] [CrossRef]
- Gnanasambandam, A.; Paull, J.; Torres, A.; Kaur, S.; Leonforte, T.; Li, H.; Zong, X.; Yang, T.; Materne, M. Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agronomy 2012, 2, 132–166. [Google Scholar] [CrossRef] [Green Version]
- Sillero, J.C.; Villegas-Fernández, A.M.; Thomas, J.; Rojas-Molina, M.M.; Emeran, A.A.; Fernández-Aparicio, M.; Rubiales, D. Faba bean breeding for disease resistance. Field Crops Res. 2010, 115, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, U.; Adhikari, K.N.; Bansal, U.; Bariana, H.; Trethowan, R. Virulence status of Uromyces viciae-fabae pathotypes in Australia. In Proceedings of the Australian Pulse Conference, Tamworth, NSW, Australia, 12–14 September 2016; p. 66. [Google Scholar]
- Liang, X. Faba bean diseases in China. FABIS Newsl. Faba Bean Inf. Serv. ICARDA 1986, 15, 49–51. [Google Scholar]
- Rashid, K.Y.; Bernier, C.C. The effect of rust on yield of faba bean cultivars and slow-rusting populations. Can. J. Plant Sci. 1991, 71, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, K.N.; Zhang, P.; Sadeque, A.; Hoxha, S.; Trethowan, R. Single independent genes confer resistance to faba bean rust (Uromyces viciae-fabae) in the current Australian cultivar Doza and a central European line Ac1655. Crop Pasture Sci. 2016, 67, 649–654. [Google Scholar] [CrossRef]
- Sillero, J.; Moreno, M.; Rubiales, D. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathol. 2000, 49, 389–395. [Google Scholar] [CrossRef]
- Cubero, J.I. The faba beans: A historic perspective. Grain Legumes 2011, 56, 5–7. [Google Scholar]
- Conner, R.; Bernier, C. Inheritance of rust resistance in inbred lines of Vicia faba. Phytopathology 1982, 72, 1555–1557. [Google Scholar] [CrossRef]
- Conner, R.; Bernier, C. Race identification in Uromyces viciae-fabae. Can. J. Plant Pathol. 1982, 4, 157–160. [Google Scholar] [CrossRef]
- Rashid, K.; Bernier, C. The genetics of resistance in Vicia faba to two races of Uromyces viciae-fabae from Manitoba. Can. J. Plant Pathol. 1986, 8, 317–322. [Google Scholar] [CrossRef]
- Sillero, J.C.; Rojas-Molina, M.M.; Emeran, A.A.; Rubiales, D. Rust resistance in faba beans. Grain Legumes Mag. 2011, 56, 27–28. [Google Scholar]
- Ijaz, U.; Adhikari, K.N.; Stoddard, F.L.; Trethowan, R.M. Rust resistance in faba bean (Vicia faba L.): Status and strategies for improvement. Australas. Plant Pathol. 2018, 47, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Avila, C.; Sillero, J.; Rubiales, D.; Moreno, M.; Torres, A. Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor. Appl. Genet. 2003, 107, 353–358. [Google Scholar] [CrossRef]
- Singh, B.; Singh, A. Linkage mapping of molecular markers and oligogenes. Marker-Assisted Plant Breeding: Principles and Practices; Springer: Berlin/Heidelberg, Germany, 2015; pp. 151–183. [Google Scholar]
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, M.M.; Pembleton, L.W.; Baillie, R.C.; Drayton, M.C.; Sudheesh, S.; Kaur, S.; Shinozuka, H.; Verma, P.; Spangenberg, G.C.; Daetwyler, H.D. Genotyping-by-sequencing through transcriptomics: Implementation in a range of crop species with varying reproductive habits and ploidy levels. Plant Biotechnol. J. 2018, 16, 877–889. [Google Scholar] [CrossRef]
- Franssen, S.U.; Shrestha, R.P.; Bräutigam, A.; Bornberg-Bauer, E.; Weber, A.P. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics. 2011, 12, 227. [Google Scholar] [CrossRef] [Green Version]
- Parra-González, L.B.; Aravena-Abarzúa, G.A.; Navarro-Navarro, C.S.; Udall, J.; Maughan, J.; Peterson, L.M.; Salvo-Garrido, H.E.; Maureira-Butler, I.J. Yellow lupin (Lupinus luteus L.) transcriptome sequencing: Molecular marker development and comparative studies. BMC Genom. 2012, 13, 425. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Shah, N.; Bhatia, S. Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Plant Biotechnol. J. 2013, 11, 894–905. [Google Scholar] [CrossRef]
- Garg, R.; Patel, R.K.; Tyagi, A.K.; Jain, M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 2011, 18, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Kimber, R.B.; Cogan, N.O.; Materne, M.; Forster, J.W.; Paull, J.G. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci. 2014, 217, 47–55. [Google Scholar] [CrossRef]
- Ocaña, S.; Seoane, P.; Bautista, R.; Palomino, C.; Claros, G.M.; Torres, A.M.; Madrid, E. Large-scale transcriptome analysis in faba bean (Vicia faba L.) under Ascochyta fabae infection. PLoS ONE 2015, 10, e0135143. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Ijaz, U. Molecular Mapping and Microscopic Analysis of Faba Bean-Uromyces viciae-fabae Host-Pathogen Interaction. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2018. [Google Scholar]
- Bansal, U.K.; Kazi, A.G.; Singh, B.; Hare, R.A.; Bariana, H.S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol. Breed. 2014, 33, 51–59. [Google Scholar] [CrossRef]
- Braich, S.; Sudheesh, S.; Forster, J.W.; Kaur, S. Characterisation of Faba Bean (Vicia faba L.) Transcriptome Using RNA-Seq: Sequencing, De Novo assembly, annotation, and expression analysis. Agronomy 2017, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Manly, K.F.; Cudmore, R.H., Jr.; Meer, J.M. Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome. 2001, 12, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J. Efficient Linkage Map Construction Using R/ASMap. 2015. Available online: https://cran.r-project.org/web/packages/ASMap/vignettes/asmapvignette.pdf (accessed on 10 November 2017).
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, F.M.; Huo, N.; Gu, Y.Q.; Luo, M.-C.; Ma, Y.; Hane, D.; Lazo, G.R.; Dvorak, J.; Anderson, O.D. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinform. 2008, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nsabiyera, V.; Qureshi, N.; Bariana, H.S.; Wong, D.; Forrest, K.L.; Hayden, M.J.; Bansal, U.K. Molecular markers for adult plant leaf rust resistance gene Lr48 in wheat. Mol. Breed. 2016, 36, 65. [Google Scholar] [CrossRef]
- Cooper, J.W.; Wilson, M.H.; Derks, M.F.; Smit, S.; Kunert, K.J.; Cullis, C.; Foyer, C.H. Enhancing faba bean (Vicia faba L.) genome resources. J. Exp. Bot. 2017, 68, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, D.M.; Angra, D. Advances in faba bean genetics and genomics. Front. Genet. 2016, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Cogan, N.O.; Forster, J.W.; Paull, J.G. Assessment of genetic diversity in faba bean based on single nucleotide polymorphism. Diversity 2014, 6, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Atienza, S.; Palomino, C.; Gutiérrez, N.; Alfaro, C.; Rubiales, D.; Torres, A.; Ávila, C. QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): Validation in field and controlled conditions. Crop Pasture Sci. 2016, 67, 216–224. [Google Scholar] [CrossRef]
- Bariana, H.S.; Bansal, U.K. Breeding for disease resistance. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 69–76. [Google Scholar]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Chhetri, M.; Bariana, H.; Kandiah, P.; Bansal, U. Yr58: A new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathology 2016, 106, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, N.; Bariana, H.; Zhang, P.; McIntosh, R.; Bansal, U.; Wong, D.; Hayden, M.; Dubcovsky, J.; Shankar, M. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis. 2018, 102, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, N.; Bariana, H.; Kolmer, J.A.; Miah, H.; Bansal, U. Genetic and molecular characterization of leaf rust resistance in two durum wheat landraces. Phytopathology 2017, 107, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Pink, D.A. Strategies using genes for non-durable disease resistance. Euphytica 2002, 124, 227–236. [Google Scholar] [CrossRef]
- Garcia, A.; Calvo, É.S.; de Souza Kiihl, R.A.; Harada, A.; Hiromoto, D.M.; Vieira, L.G.E. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: Discovery of a novel locus and alleles. Theor. Appl. Genet. 2008, 117, 545–553. [Google Scholar] [CrossRef]
- Yu, N.; Kim, M.; King, Z.R.; Harris, D.K.; Buck, J.W.; Li, Z.; Diers, B.W. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970. Theor. Appl. Genet. 2015, 128, 387–396. [Google Scholar] [CrossRef]
- van Leur, J.; Paull, J.; Kimber, R.; Robertson, L. Disease resistance and susceptibility in Ecuadorian faba bean germplasm. In Proceedings of the Australian Pulse Conference, Tamworth, NSW, Australia, 12–14 September 2016; p. 110. [Google Scholar]
Phenotype Classes (IT) | Number of Families | ||
---|---|---|---|
Observed | Expected | ||
Fiord/Doza#12034 RIL | χ2(1:1) | ||
1C | 57 | 52 | 0.48 |
33+ | 47 | 52 | 0.48 |
Total | 104 | 104 | 0.96 |
Fiord/Ac1655 RIL | χ2(1:1) | ||
12C | 69 | 60 | 1.35 |
33+ | 51 | 60 | 1.35 |
Total | 120 | 120 | 2.70 |
Doza#12034/Ac1655 F2 | χ2(9:3:3:1) | ||
;1= | 46 | 51.75 | 0.64 |
1C | 23 | 17.25 | 1.92 |
12C | 19 | 17.25 | 0.18 |
33+ | 4 | 5.75 | 0.53 |
Total | 92 | 92 | 3.27 |
Uvf-2 | KASP_Vf_0703 |
---|---|
Parents | |
Doza#12034 | G:G |
Fiord | A:A |
Cultivars | |
Ascot, Doza, Icarus, PBA-Rana, PBA-Nasma | A:A |
PBA-Cairo | |
PBA-Warda | |
Australian breeding lines | |
11NF001a-6, 11NF014b-1, IX486/7-6, IX561f-4-2, IX552Rb-2-4, IX525C-1-10, IX553Rc-2-4, AF10089, AF03109, AF09167, AF08161, IX114#15033, IX585c/1-11, IX474/4-3, IX524Rb-2-1 | A:A |
Australian field selections | |
Det-2, Cairo seln#7 | A:A |
Doza#14916 | G:G |
Germplasm accessions | |
Ac1655, Ac1227#14908, Ac1221#14910, Ac1594#5004, Ac1228#14902, Ac1231#14905, Acc740, Ac1866#15013, Ac1257#14904, Ac0973#4902, Ac1206#4919, Ac1269#8127, Ac0805#4912 | A:A |
Uvf-3 | KASP_Ac×F165 |
Parents | |
Ac1655 | C:C |
Fiord | T:T |
Cultivars | |
Ascot, Cairo, Icarus, PBA Rana | T:T |
Doza, PBA Warda, PBANasma | T:C |
Australian breeding lines | |
11NF001a-6, 11NF014b-1, IX486/7-6, IX524Rb-2-1, IX114#15033, IX525C-1-10, IX585c/1-11, AF03109, AF09167, AF08161 | T:T |
IX474/4-3, IX561f-4-2, IX552Rb-2-4, IX553Rc-2-4, AF10089 | C:C |
Australian field selections | |
Det-2, Doza#12034, Doza#14916, Cairo seln#7 | T:T |
Germplasm accessions | |
Ac1227#14908, Ac1221#14910, Ac1594#5004, Ac1228#14902, Ac1257#14904, Ac0973#4902, Ac1206#4919, Ac1269#8127, Ac0805#4912 | T:T |
Ac1231#14905, Acc740, Ac1866#15013 | C:C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijaz, U.; Sudheesh, S.; Kaur, S.; Sadeque, A.; Bariana, H.; Bansal, U.; Adhikari, K. Mapping of Two New Rust Resistance Genes Uvf-2 and Uvf-3 in Faba Bean. Agronomy 2021, 11, 1370. https://doi.org/10.3390/agronomy11071370
Ijaz U, Sudheesh S, Kaur S, Sadeque A, Bariana H, Bansal U, Adhikari K. Mapping of Two New Rust Resistance Genes Uvf-2 and Uvf-3 in Faba Bean. Agronomy. 2021; 11(7):1370. https://doi.org/10.3390/agronomy11071370
Chicago/Turabian StyleIjaz, Usman, Shimna Sudheesh, Sukhjiwan Kaur, Abdus Sadeque, Harbans Bariana, Urmil Bansal, and Kedar Adhikari. 2021. "Mapping of Two New Rust Resistance Genes Uvf-2 and Uvf-3 in Faba Bean" Agronomy 11, no. 7: 1370. https://doi.org/10.3390/agronomy11071370
APA StyleIjaz, U., Sudheesh, S., Kaur, S., Sadeque, A., Bariana, H., Bansal, U., & Adhikari, K. (2021). Mapping of Two New Rust Resistance Genes Uvf-2 and Uvf-3 in Faba Bean. Agronomy, 11(7), 1370. https://doi.org/10.3390/agronomy11071370