Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Wheat Straw
2.3. Compositional Analysis of the Raw Material and Pretreated Solids
2.4. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS)
2.5. Analytical Enzymatic Saccharification of Pretreated Solids
2.6. Analysis of Sugars and Inhibitors in Liquid Samples
2.7. Fermentability of Pretreatment Liquids
2.8. Statistical Processing of the Results
3. Results
3.1. Chemical Composition of Raw and Pretreated Solids
3.2. Carbohydrates in the Pretreatment Liquids
3.3. Effects of Pretreatment Conditions on Byproduct Formation
3.4. Enzymatic Saccharification of Pretreated Wheat Straw
3.5. Fermentability of Pretreatment Liquids
4. Discussion
4.1. Chemical Composition of Raw and Pretreated Solids
4.2. Carbohydrates in the Pretreatment Liquids
4.3. Effects of Pretreatment Conditions on the Formation of Bioconversion Inhibitors
4.4. Enzymatic Saccharification of Pretreated Wheat Straw
4.5. Fermentability of the Pretreatment Liquids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zech, K.M.; Meisel, K.; Brosowski, A.; Toft, L.V.; Müller-Langer, F. Environmental and economic assessment of the Inbicon lignocellulosic ethanol technology. Appl. Energy 2016, 171, 347–356. [Google Scholar] [CrossRef]
- Dias, M.O.S.; Lima, D.R.; Mariano, A.P. Techno-economic analysis of cogeneration of heat and electricity and second-generation ethanol production from sugarcane. In Advances in Sugarcane Biorefinery; Chandel, A.K., Silveira, M.H.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 197–212. [Google Scholar]
- Jiang, Y.; Xin, F.; Lu, J.; Dong, W.; Zhang, W.; Zhang, M.; Wu, H.; Ma, J.F.; Jiang, M. State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour. Technol. 2017, 245, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Susmozas, A.; Martín-Sampedro, R.; Ibarra, D.; Eugenio, M.E.; Iglesias, R.; Manzanares, P.; Moreno, A.D. Process strategies for the transition of 1G to advanced bioethanol production. Processes 2020, 8, 1310. [Google Scholar] [CrossRef]
- FAOSTAT—Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.fao.org/faostat/en/#search/wheat (accessed on 24 September 2020).
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource focused approach. Biomass Bioenerg. 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.H.; Thygesen, A.; Thomsen, A.B. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour. Technol. 2008, 99, 4221–4228. [Google Scholar] [CrossRef]
- Thomsen, M.H.; Thygesen, A.; Thomsen, A.B. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl. Microbiol. Biotechnol. 2009, 83, 447–455. [Google Scholar] [CrossRef]
- Talebnia, F.; Karakashev, D.; Angelidaki, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 2010, 101, 4744–4753. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zawawy, W.K.; Ibrahim, M.M.; Abdel-Fattah, Y.R.; Soliman, N.A.; Mahmoud, M.M. Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohyd. Polym. 2011, 84, 865–871. [Google Scholar] [CrossRef]
- Hendriks, A.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandla, M.L.; Martín, C.; Jönsson, L.J. Analytical enzymatic saccharification of lignocellulosic biomass for conversion to biofuels and bio-based chemicals. Energies 2018, 11, 2936. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: A new and promising detoxification method to improve the bioconversion process. Biotechnol. Biofuels 2013, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, H.; Sørensen, H.R.; Meyer, A.S. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms. Carbohydr. Res. 2014, 385, 45–57. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Cavka, A.; Stagge, S.; Jönsson, L.J. Identification of small aliphatic aldehydes in pretreated lignocellulosic feedstocks and evaluation of their inhibitory effects on yeast. J. Agric. Food Chem. 2015, 63, 9747–9754. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Wu, G.; Wang, Z.; Stagge, S.; Jönsson, L.J. Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresour. Technol. 2018, 262, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Stagge, S.; Cavka, A.; Jönsson, L.J. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast. AMB Express 2015, 5, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normark, M.; Pommer, L.; Gräsvik, J.; Hedenström, M.; Gorzsás, A.; Winestrand, S.; Jönsson, L.J. Biochemical conversion of torrefied Norway spruce after pretreatment with acid or ionic liquid. Bioenergy Res. 2016, 9, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018, 20, 2192–2205. [Google Scholar] [CrossRef] [Green Version]
- Toquero, C.; Bolado, S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour. Technol. 2014, 157, 68–76. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil. Trans. R. Soc. Lond. 1987, A321, 523–536. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012; p. 15. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; Technical Report NREL/TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008; p. 12. [Google Scholar]
- Gerber, L.; Eliasson, M.; Moritz, T.; Sundberg, B. Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrol. 2012, 95, 95–100. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Ambye-Jensen, M.; Thomsen, S.T.; Kádár, Z.; Meyer, A.S. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment. Biotechnol. Biofuels 2013, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, H.; Sun, S.; Cao, X.; Sun, R. Co-production of oligosaccharides and fermentable sugar from wheat straw by hydrothermal pretreatment combined with alkaline ethanol extraction. Ind. Crops Prod. 2018, 111, 78–85. [Google Scholar] [CrossRef]
- Min, D.; Wei, L.; Zhao, T.; Li, M.; Jia, Z.; Wan, G.; Zhang, Q.; Qin, C.; Wang, S. Combination of hydrothermal pretreatment and sodium hydroxide post-treatment applied on wheat straw for enhancing its enzymatic hydrolysis. Cellulose 2018, 25, 1197–1206. [Google Scholar] [CrossRef]
- Merali, Z.; Ho, J.D.; Collins, S.R.A.; Le Gall, G.; Elliston, A.; Käsper, A.; Waldron, K.W. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour. Technol. 2013, 131, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Ilanidis, D.; Stagge, S.; Jönsson, L.J.; Martín, C. Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor. Ind. Crops Prod. 2021, 159, 113077. [Google Scholar] [CrossRef]
- Ilanidis, D.; Wu, G.; Stagge, S.; Martín, C.; Jönsson, L.J. Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions. Bioresour. Technol. 2021, 319, 24211. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Shen, Z.; Wen, Y. Hydrolysis of wheat straw by dilute sulfuric acid in a continuous mode. Chem. Eng. J. 2015, 260, 20–27. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Salmi, T.; Holmbom, B.; Willför, S.; Murzin, D.Y. Synthesis of sugars by hydrolysis of hemicelluloses—A review. Chem. Rev. 2011, 111, 5638–5666. [Google Scholar] [CrossRef] [PubMed]
- Ibbett, R.; Gaddipati, S.; Davies, S.; Hill, S.; Tucker, G. The mechanisms of hydrothermal deconstruction of lignocellulose: New insights from thermal- analytical and complementary studies. Bioresour. Technol. 2011, 102, 9272–9278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara, R.; Lawoko, M.; van Heiningen, A. Intrinsic dissolution kinetics and topochemistry of xylan, mannan, and lignin during auto-hydrolysis of red maple wood meal. Can. J. Chem. Eng. 2018, 97, 649–661. [Google Scholar] [CrossRef]
- Trajano, H.L.; Engle, N.L.; Foston, M.; Ragauskas, A.J.; Tschaplinski, T.J.; Wyman, C.E. The fate of lignin during hydrothermal pretreatment. Biotechnol. Biofuels 2013, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Rocha, G.J.M.; Silva, V.F.N.; Martín, C.; Gonçalves, A.R.; Nascimento, V.M.; Souto-Maior, A.M. Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech. 2013, 15, 390–398. [Google Scholar] [CrossRef]
- Lü, H.; Shi, X.; Li, Y.; Meng, F.; Liu, S.; Yan, L. Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chin. J. Chem. Eng. 2017, 25, 499–506. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Madureira, J.; Leal, J.P.; Botelho, M.L.; Cooper, W.J.; Melo, R. Radiolytic degradation mechanism of acetovanillone. Chem. Eng. J. 2020, 382, 122917. [Google Scholar] [CrossRef]
- Wang, R.; Yue, J.; Jiang, J.; Li, J.; Zhao, J.P.; Xia, H.H.; Wang, K.; Xu, J.M. Hydrothermal CO2-assisted pretreatment of wheat straw for hemicellulose degradation followed with enzymatic hydrolysis for glucose production. Waste Biomass Valor 2021, 12, 1483–1492. [Google Scholar] [CrossRef]
- Leu, S.Y.; Zhu, J.Y. Substrate-related factors affecting enzymatic saccharification of lignocelluloses: Our recent understanding. Bioenerg. Res. 2013, 6, 405–415. [Google Scholar] [CrossRef]
- Larsson, S.; Palmqvist, E.; Hahn-Hägerdal, B.; Tengborg, C.; Stenberg, K.; Zacchi, G.; Nilvebrant, N.-O. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Tech. 1999, 24, 151–159. [Google Scholar] [CrossRef]
Experimental Conditions b | Glucan b | Xylan | Arabinan | Galactan | Mannan | Klason Lignin | ASL | Ash | Extractives |
---|---|---|---|---|---|---|---|---|---|
Raw | 39.8 (<0.1) | 19.7 (<0.1) | 2.2 (<0.1) | 1.3 (<0.1) | 1.1 (0.1) | 20.1 (0.1) | 2.7 (0.1) | 5.1 (0.3) | 4.7 (0.1) |
A-160 | 42.5 (<0.1) | 19.5 (<0.1) | ND | ND | ND | 21.1 (1.8) | 2.8 (0.3) | 4.7 (0.1) | 3.9 (0.1) |
A-175 | 47.1 (2.0) | 18.5 (<0.1) | ND | ND | ND | 22.2 (1.9) | 2.9 (0.1) | 4.9 (<0.1) | 4.5 (0.1) |
A-190 | 52.4 (0.2) | 11.1 (<0.1) | ND | ND | ND | 31.1 (3.3) | 2.7 (0.1) | 5.9 (0.3) | 5.9 (0.1) |
A-205 | 57.3 (<0.1) | 2.7 (0.1) | ND | ND | ND | 39.3 (0.1) | 2.8 (0.1) | 6.6 (0.1) | 5.6 (0.1) |
SA-160 | 43.5 (<0.1) | 19.7 (0.5) | ND | ND | ND | 28.8 (2.0) | 2.7 (0.1) | 5.5 (<0.1) | 4.1 (0.1) |
SA-190 | 54.8 (<0.1) | 8.6 (<0.1) | ND | ND | ND | 33.3 (0.1) | 2.3 (0.2) | 5.5 (<0.1) | 7.5 (0.1) |
Exp. Conditions | Carbohydrates (%) a | Lignin (%) a | ΔLignin b | G:S:H Ratio c |
---|---|---|---|---|
Raw | 70.4 (0.5) | 27.8 (0.6) | −5.0 | 44:50:5 |
A-160 | 73.4 (1.0) | 24.7 (1.1) | −0.8 | 46:46:7 |
A-175 | 70.5 (0.6) | 27.7 (0.5) | −2.6 | 44:49:7 |
A-190 | 66.5 (0.4) | 31.6 (0.4) | 2.2 | 45:48:7 |
A-205 | 68.6 (0.6) | 28.4 (0.6) | 13.7 | 48:46:5 |
SA-160 | 71.1 (0.4) | 27.1 (0.5) | 4.4 | 45:47:9 |
SA-190 | 65.0 (0.6) | 32.7 (0.4) | 2.9 | 45:48:7 |
A-160 | A-175 | A-190 | A-205 | SA-160 | SA-190 | |
---|---|---|---|---|---|---|
Glucose | 0.1 (<0.1) | 0.1 (<0.1) | 0.1 (<0.1) | 0.7 (<0.1) | 0.2 (<0.1) | 0.2 (0.1) |
Gluco-OS | 1.8 (0.1) | 2.4 (0.1) | 2.7 (0.1) | 2.0 (0.1) | 2.4 (0.1) | 2.7 (0.1) |
Xylose | 0.1 (<0.1) | 0.2 (<0.1) | 1.6 (0.1) | 4.4 (<0.1) | 0.1 (<0.1) | 2.5 (<0.1) |
Xylo-OS | 1.4 (0.1) | 7.5 (0.3) | 15.0 (0.3) | 0.9 (0.1) | 2.7 (0.1) | 14.1 (0.3) |
Arabinose | 0.4 (<0.1) | 1.0 (0.1) | 0.9 (<0.1) | 0.2 (<0.1) | 0.6 (0.1) | 1.0 (0.1) |
Arabino-OS | 0.8 (<0.1) | 1.1 (0.1) | 0.6 (<0.1) | <0.1 (<0.1) | 0.8 (0.1) | 0.6 (0.1) |
Galactose | ND | 0.1 (<0.1) | 0.2 (<0.1) | 0.3 (<0.1) | 0.1 (<0.1) | 0.3 (<0.1) |
Galacto-OS | 0.5 (<0.1) | 0.7 (<0.1) | 0.6 (<0.1) | 0.4 (<0.1) | 0.4 (<0.1) | 0.4 (<0.1) |
Mannose | ND | ND | 0.1 (<0.1) | 0.3 (0.1) | ND | 0.1 (<0.1) |
Manno-OS | 0.3 (<0.1) | 0.5 (<0.1) | 0.6 (<0.1) | 0.3 (0.1) | 0.4 (<0.1) | 0.8 (<0.1) |
pH | 5.0 | 4.5 | 4.0 | 3.5 | 4.5 | 3.8 |
A-160 | A-175 | A-190 | A-205 | SA-160 | SA-190 | |
---|---|---|---|---|---|---|
Furfural b | 1.2 (<0.1) | 2.0 (<0.1) | 14.4 (0.5) | 77.1 (2.4) | 0.7 (<0.1) | 24.1 (0.5) |
Furfural b,e | <0.1 (<0.1) | <0.1 (<0.1) | <0.1 (<0.1) | 1.9 (<0.1) | <0.1 (<0.1) | <0.1 (<0.1) |
HMF b | 0.1 (<0.1) | 0.1 (<0.1) | 0.3 (<0.1) | 2.4 (<0.1) | 0.1 (<0.1) | 0.6 (<0.1) |
Acetic acid b | 15.0 (0.1) | 22.5 (0.1) | 36.1 (0.1) | 66.4 (0.4) | 11.7 (0.1) | 33.8 (0.1) |
Formic acid b | 1.0 (0.1) | 2.4 (0.1) | 8.1 (0.1) | 24.1 (0.1) | 0.6 (0.1) | 7.9 (0.1) |
Levulinic acid b | <0.1 (<0.1) | <0.1 (<0.1) | 0.2 (<0.1) | 0.4 (<0.1) | <0.1 (<0.1) | 0.2 (<0.1) |
TCAC | 31 (1.5) | 41 (1.5) | 52 (1.2) | 96 (2.5) | 32 (1.0) | 54 (2.2) |
Formaldehyde b | ND | ND | ND | ND | 0.1 (0.1) | ND |
Vanillin c | 89 (7) | 124 (7) | 190 (7) | 255 (7) | 75 (7) | 214 (7) |
Syringaldehyde c | 26 (4) | 41 (4) | 75 (4) | 108 (4) | 25 (4) | 84 (4) |
p-Hydroxybenzaldehyde c | 26 (2) | 27 (3) | 34 (3) | 47 (3) | 22 (3) | 41 (3) |
Coniferyl aldehyde c | 29 (3) | 34 (3) | 50 (3) | 38 (3) | 30 (3) | 59 (3) |
p-Coumaraldehyde c | 3 (1) | 4 (1) | 5 (1) | 4 (1) | 3 (1) | 5 (1) |
Acetovanillone c | 5 (2) | 8 (2) | 15 (3) | 9 (2) | 5 (2) | 12 (2) |
p-Benzoquinone | ND | ND | ND | ND | ND | ND |
Total phenolics d | 1.0 (0.1) | 2.0 (0.1) | 3.0 (0.1) | 7.2 (0.5) | 1.6 (0.1) | 4.1 (0.2) |
TAC | 0.2 (<0.1) | 0.2 (<0.1) | 0.6 (<0.1) | 1.5 (<0.1) | 0.2 (<0.1) | 0.6 (<0.1) |
Source of Variation | Degree of Freedom | Sum of Squares | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
Pretreatment conditions (P) | 5 | 11990 | 2398.1 | 1148.47 | <0.001 |
Liquid medium (L) | 1 | 109 | 108.5 | 51.97 | <0.001 |
P:L interactions | 5 | 37 | 7.4 | 3.54 | 0.0155 |
Residuals | 24 | 50 | 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilanidis, D.; Stagge, S.; Jönsson, L.J.; Martín, C. Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy 2021, 11, 487. https://doi.org/10.3390/agronomy11030487
Ilanidis D, Stagge S, Jönsson LJ, Martín C. Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy. 2021; 11(3):487. https://doi.org/10.3390/agronomy11030487
Chicago/Turabian StyleIlanidis, Dimitrios, Stefan Stagge, Leif J. Jönsson, and Carlos Martín. 2021. "Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation" Agronomy 11, no. 3: 487. https://doi.org/10.3390/agronomy11030487
APA StyleIlanidis, D., Stagge, S., Jönsson, L. J., & Martín, C. (2021). Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy, 11(3), 487. https://doi.org/10.3390/agronomy11030487