Influence of Electromagnetic Stimulation of Seeds on the Photosynthetic Indicators in Medicago sativa L. Leaves at Various Stages of Development
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Yield and ETR Analysis
- H0—Yield (ETR) does not change in time;
- H0—Yield (ETR) does not depend on the physical factor;
- Yield (ETR) does not depend on the stage of vegetation.
3.2. Yield Analysis
3.3. ETR Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Annicchiarico, P.; Pecetti, L.; Tava, A. Physiological and morphological traits associated with adaptation of lucerne (Medicago sativa) to severely drought-stressed and to irrigated environments. Ann. Appl. Biol. 2013, 162, 27–40. [Google Scholar] [CrossRef]
- Hayes, R.; Li, G.D.; Conyers, M.K.; Virgona, J.M.; Dear, B.S. Lime increases productivity and the capacity of Lucerne (Medicago sativa L.) and phalaris (Phalaris aquatic L.) to utilize stored soil water on an acidic soil in south-eastern Australia. Plant Soil 2016, 400, 29–43. [Google Scholar] [CrossRef]
- Le, X.H.; Franco, C.M.; Ballard, R.A.; Drew, E.A. Isolation and characterization of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). Plant Soil 2016, 405, 13–24. [Google Scholar] [CrossRef]
- He, S.; Liu, G.; Yang, H. Water Use Efficiency by Alfalfa: Mechanisms Involving Anti-Oxidation and Osmotic Adjustment under Drought. Russ. J. Plant Physiol. 2012, 59, 348–355. [Google Scholar] [CrossRef]
- Marley, C.L.; Fychan, R.; Theobald, V.J.; Cuttle, S.P.; Sanderson, R. Effects of a winter or spring sowing date on soil nitrogen utilization and yield of barley following a forage crop of red clover, lucerne or hybrid ryegrass. Agric. Ecosyst. Environ. 2013, 181, 213–222. [Google Scholar] [CrossRef]
- Bilodeau, S.E.; Wu, B.S.; Rufyikiri, A.S.; MacPherson, S.; Lefsrud, M. An update on plant photobiology and implications for cannabis production. Front. Plant Sci. 2019, 10, 296. [Google Scholar] [CrossRef]
- Hall, D.O.; Rao, K.K. Fotosynteza; WNT: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- Kalaji, M.H.; Łoboda, T. Fluorescencja Chlorofilu w Badaniach Stanu Fizjologicznego Roślin Wydawnictwo; SGGW: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Alves, P.L.; Barja, P.R.; Magalhães, A.C.N. The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot. Rev. 2002, 68, 193–208. [Google Scholar] [CrossRef]
- Ptushenko, V.V.; Ptushenko, O.S.; Tikhonov, A.N. Chlorophyll fluorescence induction, chlorophyll content and chromaticity characteristics of leaves as in Arboreous plants. Biochemistry 2014, 79, 260–272. [Google Scholar]
- Sulkiewicz, M.; Ciereszko, I. Fluorescencja chlorofilu a–historia odkrycia i zastosowanie w badaniach roślin. KOSMOS Probl. Nauk Biol. 2016, 65, 103–115. (In Polish) [Google Scholar]
- Chen, Y.P.; Jia, J.F.; Yue, M. Effect of CO2 Laser Radiation on Physiological Tolerance of Wheat Seedlings Exposed to Chilling Stress. Photochem. Photobiol. 2010, 86, 600–605. [Google Scholar] [CrossRef]
- Hernandez, A.C.; Domínguez, P.A.; Cruz-Orea, A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R.; Galindo, S.L. Laser irradiation effects on field performance of maize seed genotypes. Int. Agrophys. 2009, 23, 327–332. [Google Scholar]
- Hernández, A.C.; Domínguez, P.A.; Cruz, O.A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R. Laser in agriculture. Int. Agrophys. 2010, 24, 407–422. [Google Scholar]
- Perveen, R.; Al, I.Q.; Ashraf, M.; Al-Qurainy, F.; Jamil, Y.; Ahmad, M.R. Effects of Different Doses of Low Power Continuous Wave He-Ne Laser Radiation on Some Seed Thermodynamic and Germination Parameters, and Potential Enzymes Involved in Seed Germination of Sunflower (Helianthus annuus L.). Photochem. Photobiol. 2010, 86, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.S.H.; Harith, M.A. Effects of laser biostimulation on germination of Acacia Farnesiana (L.). Willd. Acta Hortic.(ISHS) 2010, 854, 41–50. [Google Scholar] [CrossRef]
- Dziwulska-Hunek, A.; Kornarzyński, K.; Matwijczuk, A.; Pietruszewski, S.; Szot, B. Effect of laser and variable magnetic field simulation on amaranth seeds germination. Int. Agrophys. 2009, 23, 229–235. [Google Scholar]
- Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S. Effect of magnetic field on seed germination and seedling growth of sunflower. Int. Agrophys. 2012, 26, 271–278. [Google Scholar] [CrossRef]
- Moon, J.D.; Chung, H.S. Acceleration of germination of tomato seed by applying AC electric and magnetic fields. J. Electrost. 2000, 48, 103–114. [Google Scholar] [CrossRef]
- Nechitailo, G.; Gordeev, A. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors. Adv. Space Res. 2004, 34, 1562–1565. [Google Scholar] [CrossRef]
- Cakmak, T.; Rahmi, D.; Serkan, E. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 2010, 31, 120–129. [Google Scholar] [CrossRef]
- Kataria, S.; Baghel, L.; Guruprasad, K.N. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal. Agric. Biotechnol. 2017, 10, 83–90. [Google Scholar] [CrossRef]
- Vashisth, A.; Nagarajan, S. Exposure of Seeds to Static Magnetic Field Enhances Germination and Early Growth Characteristics in Chickpea (Cicer arietinum L.). Bioelectromagnetics 2008, 29, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Ohashi, Y.; Hirasaki, T.; Fujiwara, K. Effects of a 60 Hz Magnetic Field on Photosynthetic CO2 uptake and Early Growth of Radish Seedlings. Bioelectromagnetics 2004, 25, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, P.A.; Hernandez, A.C.; Cruz, O.A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R.; Martínez, O.E. Influences of the electromagnetic field in maize seed vigor. Rev. Fitotec. Mex. 2010, 33, 183–188. (In Spanish) [Google Scholar]
- Galland, P.; Pazur, A. Magnetoreception in plants. J. Plant Res. 2005, 118, 371–389. [Google Scholar] [CrossRef]
- Hernandez, A.C.; Dominguez, P.A.; Carballo, C.A.; Cruz, O.A.; Ivanov, R.; López, B.J.L.; Valcarcel, M.J.P. Alternating magnetic field irradiation effects on three genotype maize seed field performance. Acta Agrophys. 2009, 170, 7–17. [Google Scholar]
- Zepeda, B.R.; Hernández, A.C.; Domínguez, P.A.; Cruz, O.A.; Godina, N.J.J.; Martínez, O.E. Electromagnetic field and seed vigour of corn hybrids. Int. Agrophys. 2010, 4, 329–332. [Google Scholar]
- Bujak, K.; Frant, M. Influence of pre-sowing seed stimulation with magnetic Field on spring wheat yielding. Acta Agrophys. 2009, 14, 19–29. (In Polish) [Google Scholar]
- Nimmi, V.; Madhu, G. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum. L.). Int. Agrophys. 2009, 23, 195–198. [Google Scholar]
- Pietruszewski, S.; Muszyński, S.; Dziwulska, A. Electromagnetic fields and electromagnetic radiation as non-invasive external simulations for seeds (selected methods and responses). Int. Agrophys. 2007, 21, 95–100. [Google Scholar]
- Greenebaum, B.; Barnes, F. Bioengineering and Biophysical Aspects of Electromagnetic Fields; CRC Press: Boca Raton, FL, USA, 2018; Available online: https://doi.org/10.1201/9781315186580 (accessed on 10 April 2020).
- Gutiérrez Cruz, D.; Zepeda Bautista, R.; Hernández Aguilar, C.; Domínguez Pacheoo, F.A.; Cruz Orea, A.; López Bonilla, J.L. Physical characteristic of grains of maize pre-sowing treated by electromagnetic fields. Acta Agrophys. 2011, 18, 17–31. [Google Scholar]
- Nobel, P. Physicochemical and Environmental Plant Physiology, 4th ed.; Akademic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Krawiec, M.; Dziwulska-Hunek, A.; Kornarzyński, K. The use of physical factors for seed quality improvement of horticultural plants. J. Hortic. Res. 2018, 26, 81–94. [Google Scholar] [CrossRef]
- Gładyszewska, B. Estimation of a laser biostimulation dose. Int. Agrophys. 2011, 25, 403–405. [Google Scholar]
- Vasilevski, G. Perspectives of the application of biophysical methods in sustainable agriculture. Bulg. J. Plant Physiol. 2003, 29, 179–186. [Google Scholar]
- Belyavskaya, N.A. Biological effects due to weak magnetic field on plants. Adv. Space Res. 2004, 34, 1566–1574. [Google Scholar] [CrossRef]
- Aksenov, S.I.; Buluchev, A.A.; Grunina, T.Y.; Turovetskii, V.B. Mechanisms of the action of a low-frequency magnetic field on the initial stages of germination of wheat seeds. Biophysics 1996, 41, 931–937. [Google Scholar]
- García Reina, F.; Arza Pascual, L.; Almanza Fundora, I. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental results. Bioelectromagnetics 2001, 22, 596–602. [Google Scholar] [CrossRef]
- Nasiri, A.A.; Mortazaeinezhad, F.; Taheri, R. Seed germination of medicinal sage is affected by gibberellic acid, magnetic field and laser irradiation. Electromagn. Biol. Med. 2018, 37, 50–56. [Google Scholar] [CrossRef]
- Ćwintal, M.; Dziwulska-Hunek, A. Effect of electromagnetic stimulation of alfalfa seeds. Int. Agrophys. 2013, 27, 391–401. [Google Scholar] [CrossRef][Green Version]
- Ćwintal, M.; Dziwulska-Hunek, A.; Wilczek, M. Laser stimulation effect of seeds on quality of alfalfa. Int. Agrophys. 2010, 24, 15–19. [Google Scholar]
- Sujak, A.; Dziwulska-Hunek, A.; Reszczyńska, E. Effect of electromagnetic stimulation on selected Fabaceae Plants. Pol. J. Environ. Stud. 2013, 22, 893–898. [Google Scholar]
- Muszyński, S.; Gagoś, M.; Pietruszewski, S. Short-term pre-germination exposure to ELF magnetic field does not influence seedling growth in Durum Wheat (Triticum durum). Pol. J. Environ. Stud. 2009, 18, 1065–1072. [Google Scholar]
- Center, M.D.; Dąbrowski, P.; Samborska, I.A.; Łukasik, I.; Sowczyna, T.; Pietkiewicz, S.; Bąba, W.; Kalaji, H.M. Application of chlorophyll fluorescence measurements in environmental studies (in Polish). Kosmos Probl. Nauk Biol. 2016, 65, 197–205. [Google Scholar]
- Lichtenthalter, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-Vis Spectroscopy. In Current Protocols in Food Analytical Chemistry; Wiley & Sons. Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley: Chichester, UK, 2003. [Google Scholar]
- Ni, Y.; Guo, Y.J.; Guo, Y.J.; Han, L.; Tang, H.; Conyers, M. Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drogught. Photosynthetica 2012, 50, 458–466. [Google Scholar] [CrossRef]
- Erice, G.; Louahlia, S.; Irigogen, J.J.; Sánchez-Díaz, M.; Alami, I.T.; Avice, J.C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ. Exp. Bot. 2011, 72, 123–130. [Google Scholar] [CrossRef]
- Dziwulska-Hunek, A.; Ćwintal, M.; Niemczynowicz, A.; Boroń, B.; Matwijczuk, A. Effect of stress caused by electromagnetic stimulation on the fluorescence lifetime of chlorophylls in alfalfa leaves. Pol. J. Environ. Stud. 2019, 28, 3133–3143. [Google Scholar] [CrossRef]
- Schurr, U.; Walter, A.; Rascher, U. Functional dynamic of plant growth and photosynthesis—From steady state to dynamics—From homogeneity to heterogeneity. Plant Cell Environ. 2006, 29, 340–352. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Shan, L. Responsibility of non-stomatal limitations for the reduction of photosynthesis—Response of photosynthesis and antioxidant enzyme characteristics in alfalfa (Medicago sativa L.) seedlings to water stress and rehydration. Front. Agric. China 2007, 1, 255–264. [Google Scholar] [CrossRef]
- Smethurst, C.; Garnett, T.; Shabala, S. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 2005, 270, 31–45. [Google Scholar] [CrossRef]
- Mouradi, M.; Bouizgaren, A.; Farissi, M.; Latrach, L.; Qaddoury, A.; Ghoulam, C. Seed osmopriming improves plant growth, nodulation, chlorophyll fluorescence and nutrient uptake in alfalfa (Medicago sativa L.)—Rhizobia symbiosis under drought stress. Sci. Hortic. 2016, 213, 232–242. [Google Scholar] [CrossRef]
- Hwang, S.F.; Wang, H.; Gossen, B.D.; Chang, K.F.; Turnbull, G.D.; Howard, R.J. Impact of foliar diseases on photosynthesis, protein content and seed yield of alfalfa and efficacy of fungicide application. Eur. J. Plant Pathol. 2006, 115, 389–399. [Google Scholar] [CrossRef]
- Mauro, R.P.; Occhipinti, A.; Longo, A.M.G.; Mauromicale, G. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. J. Agron. Crop Sci. 2011, 197, 57–66. [Google Scholar] [CrossRef]
- Cetin, M. Change in Amount of chlorophyll in some interior ornamental plants. Kast. Univ. J. Eng. Sci. 2017, 3, 11–19. [Google Scholar]
- Singh, S.K.; Reddy, V.R.; Fleisher, D.H.; Timlin, D.J. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica 2017, 55, 421–433. [Google Scholar] [CrossRef]
- Asghar, T.; Jamil, Y.; Iqbal, M.; Abbas, M. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B Biol. 2016, 165, 283–290. [Google Scholar] [CrossRef]
- Bielinis, E.; Jóźwiak, W.; Robakowski, P. Modeling of the relationship between the SPAD values and photosynthetic pigments content in Queraus petraea and Prunus serotina leaves. Dendrobiology 2015, 73, 125–134. [Google Scholar] [CrossRef]
- Khavari-Nejd, R.A.; Chaparzadeh, N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica 1998, 35, 461–466. [Google Scholar] [CrossRef]
- Owusu-Sekyere, A.; Kontturi, J.; Hajiboland, R.; Rahmat, S.; Aliasgharzad, N.; Hartikainen, H.; Seppänen, M.M. Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant Soil 2013, 373, 541–552. [Google Scholar] [CrossRef]
- Lúcio, A.D.C.; Couto, M.R.M.; Lopes, S.J.; Storck, L. Transformação box-cox em experimentos com pimentão em ambiente protegido. Hortic. Bras. 2011, 29, 38–42. [Google Scholar] [CrossRef][Green Version]
- Piepho, H.P. Data transformation in statistical analysis of field trials with changing treatment variance. Agron. J. 2009, 101, 865–869. [Google Scholar] [CrossRef]
- Sari, B.G.; Dal’Col Lúcio, A.; Santana, C.S.; Olivoto, T.; Diel, M.I.; Krysczun, D.K. Nonlinear growth models: An alternative to ANOVA in tomato trials evaluation. Eur. J. Agron. 2019, 104, 21–36. [Google Scholar] [CrossRef]
Year | Developmental Stage | BBCH Scale | Dates | Decade | Mean Decade Temperature (°C) | Total Rainfall in the Decade (mm) |
---|---|---|---|---|---|---|
2014 | onset of budding | 51–54 | 26 June | 3 | 15.4 | 63.9 |
full budding | 55–59 | 09 July | 1 | 19.4 | 14.2 | |
onset of anthesis | 60–64 | 23 July | 3 | 21.8 | 30.6 | |
2015 | onset of budding | 51–54 | 01 May | 1 | 13.1 | 26.8 |
full budding | 55–59 | 15 May | 2 | 13.4 | 8.9 | |
onset of anthesis | 60–64 | 29 May | 3 | 13.3 | 76.2 | |
2016 | onset of budding | 51–54 | 26 April | 3 | 7.9 | 16.4 |
full budding | 55–59 | 09 May | 1 | 13.6 | 14.2 | |
onset of anthesis | 60–64 | 23 May | 3 | 19.2 | 2.1 |
Specification | Photosynthetic Efficiency Yield (II) | ||||||
---|---|---|---|---|---|---|---|
C | L1 | L5 | F1 | F5 | Mean | ||
Year | Developmental Stage | ||||||
2014 | onset of budding | 0.748a | 0.750a | 0.742a | 0.745a | 0.750a | 0.747B |
full budding | 0.625a | 0.687a | 0.672a | 0.664a | 0.627a | 0.655C | |
onset of anthesis | 0.795a | 0.801a | 0.769a | 0.798a | 0.800a | 0.793A | |
2015 | onset of budding | 0.634a | 0.618a | 0.659a | 0.611a | 0.614a | 0.627B |
full budding | 0.705a | 0.616a | 0.627a | 0.674a | 0.643a | 0.653B | |
onset of anthesis | 0.762a | 0.713a | 0.662a | 0.677a | 0.726a | 0.708A | |
2016 | onset of budding | 0.659a | 0.640a | 0.515b | 0.611a | 0.577a | 0.600A |
full budding | 0.680a | 0.678a | 0.661a | 0.685a | 0.712a | 0.683A | |
onset of anthesis | 0.797a | 0.751a | 0.735a | 0.668a | 0.398b | 0.670A |
Specification | ETR | ||||||
---|---|---|---|---|---|---|---|
C | L1 | L5 | F1 | F5 | Mean | ||
Year | Developmental Stage | ||||||
2014 | onset of budding | 83.80a | 18.96b | 13.56b | 64.61a | 36.71b | 43.53B |
full budding | 14.28a | 9.51b | 11.83a | 12.29a | 10.31b | 11.64B | |
onset of anthesis | 182.69a | 141.58a | 51.80b | 83.02b | 66.23b | 105.06A | |
2015 | onset of budding | 25.22a | 17.48a | 14.35b | 14.48b | 18.74a | 18.05B |
full budding | 24.30b | 138.22a | 70.91b | 60.98b | 35.14b | 65.91A | |
onset of anthesis | 21.70a | 58.62a | 118.79b | 60.75a | 62.26a | 64.42A | |
2016 | onset of budding | 19.47b | 60.53b | 45.53b | 71.12a | 43.49b | 48.05A |
full budding | 15.86b | 68.36a | 90.08a | 108.31a | 122.21a | 80.96A | |
onset of anthesis | 7.58b | 38.91b | 41.73b | 57.27b | 156.59a | 60.42A |
Specification | Chlorophyll a (μg g−1 Fresh Weight) | ||||||
---|---|---|---|---|---|---|---|
C | L1 | L5 | F1 | F5 | Mean | ||
Year | Developmental Stage | ||||||
2014 | onset of budding | 1849a | 1688a | 1349b | 2053a | 2399b | 1866A |
full budding | 1915a | 2053b | 1936a | 2273b | 2131b | 2061A | |
onset of anthesis | 1878b | 2090a | 2118a | 1697c | 1766c | 1910A | |
2015 | onset of budding | 2052a | 2244a | 1749b | 2094a | 1419b | 1912B |
full budding | 964b | 1654a | 1606a | 1670a | 1439a | 1467B | |
onset of anthesis | 2886a | 2753a | 3154a | 2205b | 2252b | 2650A | |
2016 | onset of budding | 2077b | 2482a | 1484c | 1927b | 1713c | 1937A |
full budding | 2266a | 1688a | 2139a | 2225a | 2570a | 2178A | |
onset of anthesis | 3584a | 2110b | 2078b | 1831b | 2786a | 2478A |
Specification | Chlorophyll b (μg g−1 Fresh Weight) | ||||||
---|---|---|---|---|---|---|---|
C | L1 | L5 | F1 | F5 | Mean | ||
Year | Developmental Stage | ||||||
2014 | onset of budding | 566a | 504a | 414b | 632a | 723b | 568A |
full budding | 598b | 644a | 593b | 704a | 687a | 645A | |
onset of anthesis | 589b | 671a | 659a | 566b | 554b | 608A | |
2015 | onset of budding | 621a | 649a | 513b | 628a | 415c | 565B |
full budding | 285b | 460a | 498a | 540a | 427a | 442B | |
onset of anthesis | 962a | 895a | 1012a | 667b | 740b | 855A | |
2016 | onset of budding | 774b | 918a | 598c | 691b | 522c | 701A |
full budding | 690a | 528a | 668a | 702a | 792a | 676A | |
onset of anthesis | 1025a | 590b | 597b | 552b | 819a | 716A |
Specification | Carotenoids (μg g−1 Fresh Weight) | ||||||
---|---|---|---|---|---|---|---|
C | L1 | L5 | F1 | F5 | Mean | ||
Year | Developmental Stage | ||||||
2014 | onset of budding | 187b | 194b | 158b | 235a | 323a | 220A |
full budding | 172b | 258a | 206b | 244a | 204b | 217A | |
onset of anthesis | 263a | 238a | 248a | 160c | 244a | 231A | |
2015 | onset of budding | 435a | 464a | 413a | 402a | 350c | 413A |
full budding | 173b | 296a | 257a | 152b | 273a | 230B | |
onset of anthesis | 387b | 470a | 444b | 329b | 348b | 395A | |
2016 | onset of budding | 333a | 305a | 154c | 221c | 208c | 244B |
full budding | 267a | 171b | 218a | 278a | 345a | 256B | |
onset of anthesis | 712a | 543a | 343b | 275c | 522c | 479A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziwulska-Hunek, A.; Kornarzyńska-Gregorowicz, A.; Niemczynowicz, A.; Matwijczuk, A. Influence of Electromagnetic Stimulation of Seeds on the Photosynthetic Indicators in Medicago sativa L. Leaves at Various Stages of Development. Agronomy 2020, 10, 594. https://doi.org/10.3390/agronomy10040594
Dziwulska-Hunek A, Kornarzyńska-Gregorowicz A, Niemczynowicz A, Matwijczuk A. Influence of Electromagnetic Stimulation of Seeds on the Photosynthetic Indicators in Medicago sativa L. Leaves at Various Stages of Development. Agronomy. 2020; 10(4):594. https://doi.org/10.3390/agronomy10040594
Chicago/Turabian StyleDziwulska-Hunek, Agata, Agnieszka Kornarzyńska-Gregorowicz, Agnieszka Niemczynowicz, and Arkadiusz Matwijczuk. 2020. "Influence of Electromagnetic Stimulation of Seeds on the Photosynthetic Indicators in Medicago sativa L. Leaves at Various Stages of Development" Agronomy 10, no. 4: 594. https://doi.org/10.3390/agronomy10040594
APA StyleDziwulska-Hunek, A., Kornarzyńska-Gregorowicz, A., Niemczynowicz, A., & Matwijczuk, A. (2020). Influence of Electromagnetic Stimulation of Seeds on the Photosynthetic Indicators in Medicago sativa L. Leaves at Various Stages of Development. Agronomy, 10(4), 594. https://doi.org/10.3390/agronomy10040594