Abstract
The growing global production of plastic, which reached 460 million tonnes in 2022 and has projections of 5.4 million tonnes of waste by 2050 without intervention, has created a severe environmental crisis that demands the development of sustainable alternatives. In this context, this study aims to characterise biodegradable films based on cassava starch and gellan gum, combining microstructural and mechanical properties with the evaluation of thermo-optical parameters. An important advance was the pioneering application of a self-normalised photoacoustic technique, used for the first time to measure thermal diffusivity (0.0013 ± 0.0002 cm2/s) and optical absorption coefficients (at 660 nm) as a function of different concentrations of aniline blue. The results validate the material, which showed high solubility (89.23 ± 1.03%) and crystallinity of 27.40 ± 1.68%. The film demonstrated remarkable biodegradability, losing almost all of its weight (98.30 ± 1.01%) in just 15 days. The measurement of the optical absorption coefficients (at 660 nm) confirmed a linear relationship with the concentration of aniline, validating Beer–Lambert’s law and providing the absorptivity of the dye within the solid matrix—something inaccessible with conventional methods. In conclusion, these films offer significant potential as a viable ecological substitute for single-use plastics, contributing significantly to mitigating the global impact of plastic waste.