Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Quantification of Anthocyanins from Kurugua Peels
2.3. Preparation of Color Indicator Films
2.4. Characterization of Films
2.4.1. Morphology, Film Thickness, Moisture Content (MC) and Density
2.4.2. Solubility in Water
2.4.3. Optical Properties
2.4.4. Surface Hydrophilicity
2.4.5. Chemical Bonds and Crystallinity
2.5. Application of Colorimetric Indicator Films for Monitoring the Freshness of Chicken Meat
2.6. Statistical Analysis
- Group 1 corresponds to the control film (PC), obtained without adding the kurugua powder;
- Group 2 corresponds to Film B (PB), obtained by adding 0.25 g of kurugua powder;
- Group 3 corresponds to Film A (PA), obtained by adding 0.5 g of kurugua powder.
- i.
- The Ryan–Joiner normality test was performed, where if p > 0.01, they comply with a normal distribution.
- ii.
- The test for homogeneity of variances (Levene or other) was performed, where if p > 0.01, the variances are equal.
- iii.
- If they complied with both hypotheses, it was confirmed that the data presented a parametric distribution, and point iv was performed. If they presented a non-parametric distribution, point v was considered.
- iv.
- ANOVA test. Where if p > 0.01, all population means are similar. If p < 0.01, there is a significant difference between the population means and Tukey’s test comparing which means are equal.
- v.
- Kruskall–Wallis test to determine if the median is equal among the three groups, followed by a Dunn comparison test to determine which groups produce statistically significant effects.
- Group 4 corresponds to a refrigerated storage temperature equal to 4 °C.
- Group 5 corresponds to a storage temperature in an artificial incubator equal to 30 °C.
3. Results and Discussions
3.1. Anthocyanins Content in Kurugua Peel Powder
Total Monomeric Anthocyanin (TMA)
3.2. Physicochemical Characterization of Films
3.2.1. Chemical Structure
3.2.2. Morphology, Thickness, and Density
3.2.3. Moisture Content (MC), Solubility in Water (SW), and Water Contact Angle (WCA)
3.2.4. Thermal Properties
3.2.5. Optical Properties
3.2.6. Application of the Colorimetric Indicator Films for Monitoring Chicken Meat Freshness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Y.; Zhao, L.; Wang, Y. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. J. Agric. Food Res. 2022, 9, 100340. [Google Scholar] [CrossRef]
- Aristizábal, J.; Sánchez Autoras, T.; Lorío, D.M. Guía Técnica para Producción y Análisis de Almidón de Yuca; Series Boletín de Servicios Agrícolas de la FAO 163; Organización de las Naciones Unidas Para la Agricultura y la Alimentación: Roma, Italy, 2007. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Agricultural Production Statistics 2000–2022; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Zhu, F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr. Polym. 2015, 122, 456–480. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- ABC Color. Kurugua—Articulos. Available online: https://www.abc.com.py/articulos/kurugua-277228.html (accessed on 30 December 2024).
- Mereles, L.; Caballero, S.; Burgos-Edwards, A.; Benítez, M.; Ferreira, D.; Coronel, E.; Ferreiro, O. Extraction of total anthocyanins from Sicana odorifera black peel fruits growing in Paraguay for food applications. Appl. Sci. 2021, 11, 6026. [Google Scholar] [CrossRef]
- Badui Dergal, S. Química de los Alimentos, 4th ed.; McGraw-Hill Interamericana: Ciudad de México, Mexico, 2006. [Google Scholar]
- Wang, Y.; Zhao, L.; Wang, D.; Huo, Y.; Ji, B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: Antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J. Sci. Food Agric. 2016, 96, 2494–2503. [Google Scholar] [CrossRef]
- Merz, B.; Capello, C.; Leandro, G.C.; Moritz, D.E.; Monteiro, A.R.; Valencia, G.A. A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. Int. J. Biol. Macromol. 2020, 153, 625–632. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Wulandari, L.; Wartono, M.W.; Munawaroh, H.; Ramelan, A.H. (The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conf. Ser. Mater. Sci. Eng. 2017, 193, 012047. [Google Scholar] [CrossRef]
- Capello, C.; Trevisol, T.C.; Pelicioli, J.; Terrazas, M.B.; Monteiro, A.R.; Valencia, G.A. Preparation and Characterization of Colorimetric Indicator Films Based on Chitosan/Polyvinyl Alcohol and Anthocyanins from Agri-Food Wastes. J. Polym. Environ. 2021, 29, 1616–1629. [Google Scholar] [CrossRef]
- Luchese, C.L.; Sperotto, N.; Spada, J.C.; Tessaro, I.C. Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. Int. J. Biol. Macromol. 2017, 104, 11–18. [Google Scholar] [CrossRef]
- Han, B.; Chen, P.; Guo, J.; Yu, H.; Zhong, S.; Li, D.; Liu, C.; Feng, Z.; Jiang, B. A Novel Intelligent Indicator Film: Preparation, Characterization, and Application. Molecules 2023, 28, 3384. [Google Scholar] [CrossRef]
- Quezada, I. Envases Activos e Inteligentes: Tendencias y Principales Aplicaciones para el Comercio de Carne; Report Number 7. 2013. Available online: https://bibliotecadigital.odepa.gob.cl/handle/20.500.12650/70093 (accessed on 5 March 2025).
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.T.; Guerra Dias, A.R.; da Rosa Zavareze, E. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Capello, C.; Leandro, G.C.; Gagliardi, T.R.; Valencia, G.A. Intelligent Films from Chitosan and Biohybrids Based on Anthocyanins and Laponite®: Physicochemical Properties and Food Packaging Applications. J. Polym. Environ. 2021, 29, 3988–3999. [Google Scholar] [CrossRef]
- Gaviria, Y.A.R.; Palencia, N.S.N.; Capello, C.; Trevisol, T.C.; Monteiro, A.R.; Valencia, G.A. Nanostructured pH-Indicator Films Based on Cassava Starch, Laponite, and Jambolan (Syzygium cumini) Fruit Manufactured by Thermo-Compression. Starch-Stärke 2021, 73, 2000208. [Google Scholar] [CrossRef]
- Ahmad, H.N.; Yong, Y.; Tang, Z.; Li, R.; Munawar, N.; Zhu, J. Multifunctional layer-by-layer smart film with betalains and selenium nanoparticles for intelligent meat freshness monitoring and preservation. Food Chem. 2025, 471, 142737. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Filho, J.G.; Bertolo, M.R.V.; Fernandes, S.S.; Lemes, A.C.; da Cruz Silva, G.; Junior, S.B.; de Azeredo, H.M.C.; Mattoso, L.H.C.; Egea, M.B. Intelligent and active biodegradable biopolymeric films containing carotenoids. Food Chem. 2024, 434, 137454. [Google Scholar] [CrossRef]
- Luo, X.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. Productos y Elaboración|Producción y Productos Avícolas. Available online: https://www.fao.org/poultry-production-products/products-and-processing/es/ (accessed on 30 December 2024).
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. Las Aves de Corral en la Nutrición Humana|Producción y Productos Avícolas. Available online: https://www.fao.org/poultry-production-products/products-and-processing/poultry-in-human-nutrition/es/ (accessed on 30 December 2024).
- Gómez Portilla, M.F.; Gómez Oviedo, N. Evaluación de la Calidad de Carne de Pollo (Pectoralis Major y Pectoralis Menor) que se Expende en la Ciudad de San Juan de Pasto (Nariño); Universidad de Nariño: Pasto, Colombia, 2013. [Google Scholar]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1–F2. [Google Scholar] [CrossRef]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydr. Polym. 2013, 71, 269–276. [Google Scholar] [CrossRef]
- Valencia, G.A.; Luciano, C.G.; Lourenço, R.V.; do Amaral Sobral, P.J. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite. Int. J. Biol. Macromol. 2018, 107, 1576–1583. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yong, H.; Liu, J.; Zhang, X.; Liu, J. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. Int. J. Biol. Macromol. 2019, 134, 80–90. [Google Scholar] [CrossRef]
- García, M.A.; Pinotti, A.; Martino, M.N.; Zaritzky, N.E. Characterization of composite hydrocolloid films. Carbohydr. Polym. 2004, 56, 339–345. [Google Scholar] [CrossRef]
- Cael, S.J.; Koenig, J.L.; Blackwell, J. Infrared and raman spectroscopy of carbohydrates: Part III: Raman spectra of the polymorphic forms of amylose. Carbohydr. Res. 1973, 29, 123–134. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef]
- Nicoué, E.É.; Savard, S.; Belkacemi, K. Anthocyanins in Wild Blueberries of Quebec: Extraction and Identification. J. Agric. Food Chem. 2007, 55, 5626–5635. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Effect of incorporation of blackberry particles on the physicochemical properties of edible films of arrowroot starch. Dry. Technol. 2019, 37, 448–457. [Google Scholar] [CrossRef]
- Leiva Ramos, M.S.; Morales Canchumanya, J.F. Obtención y Caracterización de Películas con Microencapsulado y Aceite Esencial de Huacatay Para la Conservación de Carne de Cuy; Universidad Nacional del Centro del Perú: Huancayo, Peru, 2021. [Google Scholar]
- Akhter, R.; Masoodi, F.A.; Wani, T.A.; Rather, S.A. Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. Int. J. Biol. Macromol. 2019, 137, 1245–1255. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Ramaswamy, H.S. Effect of Soybean Oil on the Improvement of the Functionality of Edible Membrane-Type Food Packaging Films Based on Caseinate–Carboxymethyl Chitosan Compositions. Membranes 2024, 14, 104. [Google Scholar] [CrossRef]
- Linseis. Ángulo de Contacto. Available online: https://www.linseis.com/es/propiedades/angulo-de-contacto/ (accessed on 30 December 2024).
- ATRIA Innovation. ¿Qué es el Ángulo de Contacto? Available online: https://atriainnovation.com/blog/que-es-el-angulo-de-contacto/ (accessed on 30 December 2024).
- Velásquez-Castillo, L.E.; Leite, M.A.; Tisnado, V.J.A.; Ditchfield, C.; Sobral, P.J.A.; Moraes, I.C.F. Cassava Starch Films Containing Quinoa Starch Nanocrystals: Physical and Surface Properties. Foods 2023, 12, 576. [Google Scholar] [CrossRef]
- Seligra, P.G.; Medina Jaramillo, C.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydr. Polym. 2016, 138, 66–74. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Ayala, G.; Agudelo, A.; Vargas, R. Effect of Glycerol on the Electrical Properties and Phase Behavior of Cassava Starch Biopolymers. Dyna 2012, 79, 138–147. [Google Scholar]
- García, N.L.; Famá, L.; Dufresne, A.; Aranguren, M.; Goyanes, S. A comparison between the physico-chemical properties of tuber and cereal starches. Food Res. Int. 2009, 42, 976–982. [Google Scholar] [CrossRef]
- Konica Minolta Sensing. Entendiendo El Espacio de Color CIE L*A*B*. Available online: https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/ (accessed on 30 December 2024).
- Capello, C.; Leandro, G.C.; Maduro Campos, C.E.; Hotza, D.; Mattar Carciofi, B.A.; Valencia, G.A. Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. J. Food Eng. 2019, 262, 162–169. [Google Scholar] [CrossRef]
- Wen, P.; Wu, J.; Wu, J.; Wang, H.; Wu, H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024, 13, 717. [Google Scholar] [CrossRef]
Measured Absorbance * | Calculated Absorbance ** | TMA *** (mg/L) | |||
---|---|---|---|---|---|
pH = 1 | pH = 4.5 | ||||
522 nm | 699 nm | 522 nm | 699 nm | ||
0.1180 | 0.0030 | 0.0440 | 0.0050 | 0.0760 | 12.69 |
0.1150 | 0.0030 | 0.0450 | 0.0040 | 0.0710 | 11.86 |
0.1180 | 0.0050 | 0.0470 | 0.0050 | 0.0710 | 11.86 |
mean | 0.727 | 12.13 | |||
standard deviation | 0.0029 | 0.48 |
Film | Thickness (mm) | Density (g/cm3) | MC (%) | SW (%) | WCA (°) |
---|---|---|---|---|---|
PC | 0.08 ± 0.01 B | 0.326 ± 0.060 A | 21.36 ± 4.08 A | 15.57 ± 0.98 B | 31.63 ± 0.81 C |
PB | 0.12 ± 0.01 A | 0.199 ± 0.016 B | 23.01 ± 2.31 A | 15.25 ± 1.52 B | 61.61 ± 1.16 A |
PA | 0.13 ± 0.01 A | 0.170 ± 0.022 B | 21.56 ± 1.22 A | 18.88 ± 0.89 A | 41.70 ± 0.56 B |
Films | L* | a* | b* | ΔE* | Op (A600/mm) |
---|---|---|---|---|---|
PC | 85.59 ± 0.07 A | −20.41 ± 0.05 C | 5.22 ± 0.14 C | 00.00 ± 0.00 C | 2.73 ± 0.62 C |
PB | 62.31 ± 0.57 B | 7.41 ± 0.43 B | 9.99 ± 0.29 B | 25.02 ± 0.09 B | 6.17 ± 0.88 B |
PA | 51.15 ± 2.43 C | 10.79 ± 0.71 A | 10.53 ± 0.20 A | 36.60 ± 2.47 A | 7.74 ± 0.61 A |
Films | pH | L* | a* | b* | ΔE* |
---|---|---|---|---|---|
PB | 2 | 79.42 ± 1.47 A | 4.14 ± 0.23 B | 8.90 ± 0.51 F,G,H | 4.04 ± 1.38 C,D,E |
4 | 79.45 ± 1.00 A | 2.66 ± 0.22 C | 7.90 ± 0.47 H,I | 2.74 ± 0.76 E | |
6 | 77.03 ± 1.35 A,B,C | 1.58 ± 0.27 D | 7.67 ± 0.26 I | 0.00 ± 0.00 F | |
8 | 75.38 ± 1.69 B,C,D | −1.74 ± 0.16 F | 11.73 ± 0.20 D | 5.70 ± 0.41 B,C | |
10 | 77.84 ± 1.13 A,B | −1.65 ± 0.05 F | 14.33 ± 0.20 B | 7.55 ± 0.46 B | |
12 | 78.00 ± 0.58 A,B | 0.82 ± 0.30 E | 10.67 ± 0.34 E | 3.51 ± 0.73 D,E | |
PA | 2 | 75.77 ± 1.43 A,B,C | 5.23 ± 0.54 A | 8.54 ± 0.59 G,H,I | 4.71 ± 1.27 C,D |
4 | 74.77 ± 1.20 C,D,E | 4.45 ± 0.31 B | 9.22 ± 0.24 F,G,I | 3.76 ± 0.65 D,E | |
6 | 72.81 ± 1.50 D,E | 1.99 ± 0.22 D | 9.60 ± 0.44 F,I | 0.00 ± 0.00 F | |
8 | 72.37 ± 1.38 E | −2.08 ± 0.24 F | 13.33 ± 0.78 B,C | 5.85 ± 1.02 B,C | |
10 | 75.27 ± 0.99 B,C,D,E | −2.17 ± 0.17 F | 17.94 ± 0.33 A | 9.78 ± 0.64 A | |
12 | 75.22 ± 1.22 B,C,D,E | 0.79 ± 0.20 E | 13.11 ± 0.51 C | 4.60 ± 1.27 C,D,E |
T (°C) | Time (h) | L* | a* | b* | ∆E* |
---|---|---|---|---|---|
4 | 0 | 45.44 ± 2.13 D | 10.31 ± 0.80 A | 8.51 ± 0.51 B | 0.00 ± 0.00 D |
24 | 54.53 ± 1.54 C | 7.35 ± 0.62 B | 10.78 ± 0.53 B | 9.87 ± 3.14 C | |
48 | 63.39 ± 2.30 A | 4.48 ± 1.70 C | 8.74 ± 3.17 B | 19.16 ± 3.15 A | |
72 | 58.47 ± 0.27 B | 6.47 ± 0.24 B | 10.69 ± 0.33 B | 13.77 ± 2.05 B,C | |
96 | 58.58 ±1.13 B | 5.88 ± 0.35 B,C | 11.39 ± 0.53 B | 14.17 ± 2.61 A,B,C | |
30 | 0 | 45.44 ± 2.13 D | 10.31 ± 0.80 A | 8.51 ± 0.51 B | 0.00 ± 0.00 D |
24 | 56.04 ± 0.94 B,C | 2.43 ± 0.43 D | 14.96 ± 0.85 A | 14.74 ± 2.60 A,B,C | |
48 | 55.82 ± 1.87 B,C | 1.28 ± 0.63 D | 17.31 ± 2.47 A | 16.43 ± 2.92 A,B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, O.; Valencia, G.A.; Ferreiro, O.B.; Duarte, S. Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder. Polymers 2025, 17, 1167. https://doi.org/10.3390/polym17091167
Duarte O, Valencia GA, Ferreiro OB, Duarte S. Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder. Polymers. 2025; 17(9):1167. https://doi.org/10.3390/polym17091167
Chicago/Turabian StyleDuarte, Orlando, Germán Ayala Valencia, Omayra B. Ferreiro, and Shirley Duarte. 2025. "Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder" Polymers 17, no. 9: 1167. https://doi.org/10.3390/polym17091167
APA StyleDuarte, O., Valencia, G. A., Ferreiro, O. B., & Duarte, S. (2025). Biodegradable Colorimetric Indicative Films Based on Kurugua (Sicana odorifera) Peel Powder. Polymers, 17(9), 1167. https://doi.org/10.3390/polym17091167