Synthesis and Comparative Study of the Structure and Antibacterial Activity of Polygalacturonate Complexes with Ionic and Nanoparticulate Silver
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver-Polygalacturonate Complexes
2.2.1. General
2.2.2. Characterization of Polysaccharides
2.2.3. Preparation of Sodium Polygalacturonate
2.2.4. Oxidation of Polygalacturonate
2.2.5. Reduction of Polygalacturonate
2.2.6. Preparation of Polygalacturonate Complexes with Ionic Silver
2.2.7. Preparation of Polygalacturonate Complexes with Silver Nanoparticles
2.3. Characterization of the Nanostructure of Silver-Polygalacturonate Complexes
2.3.1. Dynamic Light Scattering
2.3.2. Transmission Electron Microscopy (TEM)
2.4. Study of Antibacterial Effects
2.4.1. Minimal Inhibitory Concentrations
2.4.2. ζ and ROS Level of Bacterial Cells
2.4.3. Study of Drug Susceptibility of Clinically Isolated Bacteria
2.5. Assessment of Mammalian Cell Viability
2.5.1. Cell Culture Conditions
2.5.2. Viability Assay
2.5.3. Detection of Cellular ROS and Glutathione
2.6. In Vivo Study
2.6.1. Animals
2.6.2. Infected Wound Model
2.6.3. Wound Swabbing
2.6.4. Histological Analysis
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Polygalacturonate
3.2. Composition of Silver-Polygalacturonate Complexes
3.3. Intrinsic Reducing Ability of Polygalacturonate
3.4. Association of Silver-Polygalacturonate Complexes in Solution
3.5. Nanostructure of Silver-Polygalacturonate Complexes
3.6. Antibacterial Activity
3.7. Effect on Cell Viability
3.8. Probing Compound-Cell Interactions
3.9. Effects of Silver-Containing Compounds on Infected Wounds
3.9.1. Visual Examination and Swab Assay Data
3.9.2. Histological Data
3.10. Susceptibility of Intrahospital Infections to Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.D.; Hoyos-Nogues, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical Uses of Silver: History, Myths, and Scientific Evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef] [PubMed]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef]
- Kedziora, A.; Speruda, M.; Krzyzewska, E.; Rybka, J.; Lukowiak, A.; Bugla-Ploskonska, G. Similarities and Differences Between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef]
- Hadrup, N.; Sharma, A.K.; Loeschner, K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. [Google Scholar] [CrossRef]
- Bajwa, N.A.; Mazurek, K.; Chebolu, E.; Pourafkari, L. Argyria: A cause of pseudocyanosis. QJM 2021, 114, 341. [Google Scholar] [CrossRef]
- Noga, M.; Milan, J.; Frydrych, A.; Jurowski, K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)-Critical Review: State of the Art. Int. J. Mol. Sci. 2023, 24, 5133. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Li, P.J.; Xie, R.S.; Cao, X.Y.; Su, D.L.; Shan, Y. Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. Int. J. Biol. Macromol. 2022, 214, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wei, N.; Wei, J.; Fang, C.; Feng, T.; Liu, F.; Liu, X.; Wu, B. Curcumin and silver nanoparticles loaded antibacterial multifunctional pectin/gelatin films for food packaging applications. Int. J. Biol. Macromol. 2024, 266, 131248. [Google Scholar] [CrossRef] [PubMed]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; El-Beheri, N.G.; Agwa, M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020, 238, 116175. [Google Scholar] [CrossRef]
- Rybka, M.; Mazurek, L.; Konop, M. Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing—From Experimental Studies to Clinical Practice. Life 2022, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Sood, K.; Shanavas, A. Autologous serum protein stabilized silver quantum clusters as host-specific antibacterial agents. Nanomedicine 2024, 19, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Duran, N.; Silveira, C.P.; Duran, M.; Martinez, D.S. Silver nanoparticle protein corona and toxicity: A mini-review. J. Nanobiotechnol. 2015, 13, 55. [Google Scholar] [CrossRef]
- Lai, W.; Wang, Q.; Li, L.; Hu, Z.; Chen, J.; Fang, Q. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns. Colloids Surf. B Biointerfaces 2017, 152, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.C.S.; Panico, K.; Trousil, J.; Janouskova, O.; de Castro, C.E.; Stepanek, P.; Giacomelli, F.C. Protein coronas coating polymer-stabilized silver nanocolloids attenuate cytotoxicity with minor effects on antimicrobial performance. Colloids Surf. B Biointerfaces 2022, 218, 112778. [Google Scholar] [CrossRef]
- Zaitseva, O.; Khudyakov, A.; Sergushkina, M.; Solomina, O.; Polezhaeva, T. Pectins as a universal medicine. Fitoterapia 2020, 146, 104676. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Presentato, A.; Scurria, A.; Nuzzo, D.; Alduina, R.; Ilharco, L.M.; Pagliaro, M. Pectin: A Long-Neglected Broad-Spectrum Antibacterial. ChemMedChem 2020, 15, 2228–2235. [Google Scholar] [CrossRef]
- Wang, R.; Liang, R.; Dai, T.; Chen, J.; Shuai, X.; Liu, C. Pectin-based adsorbents for heavy metal ions: A review. Trends Food Sci. Technol. 2019, 91, 319–329. [Google Scholar] [CrossRef]
- Kartel, M.T.; Kupchik, L.A.; Veisov, B.K. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere 1999, 38, 2591–2596. [Google Scholar] [CrossRef]
- Devasvaran, K.; Lim, V. Green synthesis of metallic nanoparticles using pectin as a reducing agent: A systematic review of the biological activities. Pharm. Biol. 2021, 59, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Roman-Benn, A.; Contador, C.A.; Li, M.-W.; Lam, H.-M.; Ah-Hen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Vyshtakalyuk, A.B.; Tsepaeva, O.V.; Mironova, L.G.; Mindubaev, A.Z.; Nizameev, I.R.; Kholin, K.V.; Milyukov, V.A. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes. Carbohydr. Polym. 2015, 134, 524–533. [Google Scholar] [CrossRef]
- Minzanova, S.; Mironov, V.; Vyshtakalyuk, A.; Tsepaeva, O.; Mindubaev, A.; Mironova, L.; Zobov, V.; Lenina, O.; Lantsova, A.; Konovalov, A. Scientific grounds and process aspects for the production of polygalacturonate with Ca2+ and Fe2+ ions. Dokl. Chem. 2009, 429, 297–300. [Google Scholar] [CrossRef]
- Minzanova, S.; Khamatgalimov, A.; Ryzhkina, I.; Murtazina, L.; Mironova, L.; Kadirov, M.; Vyshtakalyuk, A.; Milyukov, V.; Mironov, V. Synthesis and physicochemical properties of antianemic iron and calcium complexes with sodium polygalacturonate. Dokl. Phys. Chem. 2016, 467, 45–48. [Google Scholar] [CrossRef]
- Minzanova, S.; Mironov, V.; Khabibullina, A.; Arkhipova, D.; Mironova, L.; Nemtarev, A.; Vyshtakalyuk, A.; Chekunkov, E.; Kholin, K.; Nizameev, I. New metal complexes of citrus pectin with magnesium ions: Synthesis, properties, and immunomodulatory activity. Russ. Chem. Bull. 2021, 70, 433–443. [Google Scholar] [CrossRef]
- Minzanova, S.; Mironov, V.; Mironova, L.; Nemtarev, A.; Vyshtakalyuk, A.; Kholin, K.; Nizameeva, G.; Milyukov, V. Synthesis, properties, and antianemic activity of new metal complexes of sodium pectinate with iron and calcium. Russ. Chem. Bull. 2019, 68, 48–54. [Google Scholar] [CrossRef]
- Nizameev, I.R.; Kadirov, D.M.; Nizameeva, G.R.; Sabirova, A.F.; Kholin, K.V.; Morozov, M.V.; Mironova, L.G.; Zairov, R.R.; Minzanova, S.T.; Sinyashin, O.G.; et al. Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Int. J. Mol. Sci. 2022, 23, 14247. [Google Scholar] [CrossRef] [PubMed]
- Kholin, K.V.; Sabirova, A.F.; Kadirov, D.M.; Khamatgalimov, A.R.; Khrizanforov, M.N.; Nizameev, I.R.; Morozov, M.V.; Gainullin, R.R.; Sultanov, T.P.; Minzanova, S.T.; et al. Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells. Membranes 2023, 13, 635. [Google Scholar] [CrossRef]
- Gasilova, E.R.; Alexandrova, G.P.; Tyshkunova, I.V.; Dubashynskaya, N.V.; Vlasova, E.N.; Romanov, D.P. Optically active pH-dependent colloids of silver nanoparticles capped by polygalacturonic acid. J. Nanopart. Res. 2023, 25, 10. [Google Scholar]
- CLSI M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed. CLSI: Wayne, PA, USA, 2012; Volume 32, p. 88.
- Ishkaeva, R.A.; Zoughaib, M.; Laikov, A.V.; Angelova, P.R.; Abdullin, T.I. Probing Cell Redox State and Glutathione-Modulating Factors Using a Monochlorobimane-Based Microplate Assay. Antioxidants 2022, 11, 391. [Google Scholar] [PubMed]
- Perni, S.; Alotaibi, H.F.; Yergeshov, A.A.; Dang, T.; Abdullin, T.I.; Prokopovich, P. Long acting anti-infection constructs on titanium. J. Control. Release 2020, 326, 91–105. [Google Scholar] [CrossRef]
- Yergeshov, A.A.; Zoughaib, M.; Ishkaeva, R.A.; Savina, I.N.; Abdullin, T.I. Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels 2022, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yergeshov, A.A.; Al-Thaher, Y.; Avdokushina, S.; Statsenko, E.; Abdullin, T.I.; Prokopovich, P. Nanocomposite orthopaedic bone cement combining long-acting dual antimicrobial drugs. Biomater. Adv. 2023, 153, 213538. [Google Scholar] [CrossRef] [PubMed]
- Harding, S.E.; Berth, G.; Ball, A.; Mitchell, J.R.; de la Torre, J.G. The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydr. Polym. 1991, 16, 1–15. [Google Scholar] [CrossRef]
- Tewari, Y.B.; Goldberg, R.N. Thermodynamics of hydrolysis of disaccharides: Lactulose, α-d-melibiose, palatinose, d-trehalose, d-turanose and 3-o-β-d-galactopyranosyl-d-arabinose. Biophys. Chem. 1991, 40, 59–67. [Google Scholar]
- Knirel, Y.A.; Naumenko, O.I.; Sof’ya, N.S.; Perepelov, A.V. Chemical methods for selective cleavage of glycosidic bonds in the structural analysis of bacterial polysaccharides. Russ. Chem. Rev. 2019, 88, 406. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar]
- Barras, F.; Aussel, L.; Ezraty, B. Silver and Antibiotic, New Facts to an Old Story. Antibiotics 2018, 7, 79. [Google Scholar] [CrossRef]
- Gross, J.; Farinelli, W.; Sadow, P.; Anderson, R.; Bruns, R. On the mechanism of skin wound” contraction”: A granulation tissue” knockout” with a normal phenotype. Proc. Natl. Acad. Sci. USA 1995, 92, 5982–5986. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Li, H.c.; Wu, P.H.; Huang, P.H.; Wang, Y.T. Assessment of oligogalacturonide from citrus pectin as a potential antibacterial agent against foodborne pathogens. J. Food Sci. 2014, 79, M1541–M1544. [Google Scholar] [CrossRef]
- Gasilova, E.R.; Aleksandrova, G.P.; Tyshkunova, I.V. Colloidal nanoparticles of sodium polygalacturonate prepared by nanoprecipitation. Carbohydr. Polym. 2022, 291, 119521. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.J.; Jiang, Y.; Zhou, Z. Citrus pectin derived silver nanoparticles and their antibacterial activity. Inorg. Nano-Met. Chem. 2017, 47, 15–20. [Google Scholar] [CrossRef]
- Li, K.; Cui, S.; Hu, J.; Zhou, Y.; Liu, Y. Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydr. Polym. 2018, 199, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Pallavicini, P.; Arciola, C.R.; Bertoglio, F.; Curtosi, S.; Dacarro, G.; D’Agostino, A.; Ferrari, F.; Merli, D.; Milanese, C.; Rossi, S.; et al. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J. Colloid. Interface Sci. 2017, 498, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Rzheuzsky, S.E.; Dovnar, A.G.; Kugach, V.V. Study of antimicrobial activity of the funiargol. Bull. Vitebsk. State Med. Univ. 2015, 14, 120–126. [Google Scholar]
- Korshed, P.; Li, L.; Liu, Z.; Mironov, A.; Wang, T. Size-dependent antibacterial activity for laser-generated silver nanoparticles. J. Interdiscip. Nanomed. 2019, 4, 24–33. [Google Scholar] [CrossRef]
- Demchenko, V.; Riabov, S.; Sinelnikov, S.; Radchenko, O.; Kobylinskyi, S.; Rybalchenko, N. Novel approach to synthesis of silver nanoparticles in interpolyelectrolyte complexes based on pectin, chitosan, starch and their derivatives. Carbohydr. Polym. 2020, 242, 116431. [Google Scholar] [CrossRef]
- Yang, E.J.; Kim, S.; Kim, J.S.; Choi, I.H. Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials 2012, 33, 6858–6867. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Yan, J.; Ingle, T.; Jones, M.Y.; Mei, N.; Boudreau, M.D.; Cunningham, C.K.; Abbas, M.; Paredes, A.M.; et al. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 2016, 10, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Tsepaeva, O.V.; Salikhova, T.I.; Grigor’eva, L.R.; Ponomaryov, D.V.; Dang, T.; Ishkaeva, R.A.; Abdullin, T.I.; Nemtarev, A.V.; Mironov, V.F. Synthesis and in vitro evaluation of triphenylphosphonium derivatives of acetylsalicylic and salicylic acids: Structure-dependent interactions with cancer cells, bacteria, and mitochondria. Med. Chem. Res. 2021, 30, 925–939. [Google Scholar] [CrossRef]
- Long, Y.M.; Hu, L.G.; Yan, X.T.; Zhao, X.C.; Zhou, Q.F.; Cai, Y.; Jiang, G.B. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int. J. Nanomed. 2017, 12, 3193–3206. [Google Scholar] [CrossRef] [PubMed]
- Menke, N.B.; Ward, K.R.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F. Impaired wound healing. Clin. Dermatol. 2007, 25, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Castaldo, N. Classification of Wound Infections. In Pearls and Pitfalls in Skin Ulcer Management; Maruccia, M., Papa, G., Ricci, E., Giudice, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 369–383. [Google Scholar]
No | AgNO3 * | NaBH4 * | Na+:Ag+ Mol. Ratio, % | Characteristics |
---|---|---|---|---|
1 | 7.76 | – | 99:1 | Yield 89%. Moisture 5.7%. FTIR (ν/cm−1): 3436, 2937, 1616, 1415, 1332, 1238, 1146, 1101, 1016, 950, 891, 835, 755, 637. Metal content (%): Na 11.08; Ag 0.49 |
2 | 19.92 | – | 97.5:2.5 | Yield 93%. Moisture 6.4%. FTIR (ν/cm−1): 3417, 2932, 1611, 1422, 1332, 1238, 1101, 1016, 951, 891, 836, 766, 642. Metal content (%): Na 10.80; Ag 1.32 |
3 | 38.76 | – | 95:5 | Yield 90%. Moisture 5.4%. FTIR (ν/cm−1): 3432, 2934, 1610, 1421, 1330, 1237, 1148, 1101, 1013, 951, 893, 835, 764, 638. Metal content (%): Na 10.53; Ag 2.63 |
4 | 77.52 | – | 90:10 | Yield 91%. Moisture 6.1%. FTIR (ν/cm−1): 3437, 2931, 1614, 1414, 1331, 1239, 1146, 1102, 1016, 949, 894, 835, 639. Metal content (%): Na 10.00; Ag 5.18 |
5 | 7.76 | 0.9 | 99:1 | Yield 90%. Moisture 5.4%. FTIR (ν/cm−1): 3232, 2934, 1609, 1415, 1332, 1237, 1148, 1098, 1013, 950, 892, 835, 766, 638. Metal content (%): Na 11.15; Ag 0.5 |
6 | 19.92 | 2.2 | 97.5:2.5 | Yield 93%. Moisture 6.4%. FTIR (ν/cm−1): 3435, 2930, 1611, 1414, 1331, 1238, 1149, 1100, 1015, 951, 892, 835, 764, 638. Metal content (%): Na 11.08; Ag 1.26 |
7 | 38.76 | 4.4 | 95:5 | Yield 91%. Moisture 5.3%. FTIR (ν/cm−1): 3430, 2928, 1619, 1414, 1330, 1237, 1149, 1100, 1015, 950, 893, 835, 770, 635. Metal content (%): Na 11.08; Ag 2.48. |
8 | 77.52 | 8.8 | 90:10 | Yield 92%. Moisture 6.8%. FTIR (ν/cm−1): 3430, 2930, 1608, 1413, 1331, 1234, 1146, 1098, 1012, 950, 891, 834, 764, 639. Metal content (%): Na 11.19; Ag 5.06 |
No | E.c. | K.p. | S.a. | B.s. | E.c. | K.p. | S.a. | B.s. |
---|---|---|---|---|---|---|---|---|
1 | 2.4 | 1.2 | 2.4 | 2.4 | 8.8 | 4.4 | 8.8 | 8.8 |
2 | 1.2 | 0.6 | 1.2 | 0.6 | 11 | 5.4 | 11 | 5.4 |
3 | 1.2 | 0.3 | 0.6 | 0.3 | 21.6 | 5.4 | 10.8 | 5.4 |
4 | 0.3 | 0.1 | 0.6 | 0.3 | 10.4 | 5.3 | 20.9 | 10.5 |
5 | 2.3 | 1.2 | 2.3 | 2.3 | 8.6 | 4.3 | 8.6 | 8.6 |
6 | 1.2 | 0.6 | 1.2 | 0.6 | 10.7 | 5.4 | 10.7 | 5.4 |
7 | 0.3 | 0.3 | 0.6 | 0.3 | 5.1 | 5.2 | 10.4 | 5.2 |
8 | 0.2 | 0.2 | 0.3 | 0.2 | 5.2 | 5.2 | 10.4 | 5.2 |
9 | 0.1 | 0.1 | 0.2 | 0.1 | 5.7 | 5.7 | 11.4 | 5.7 |
No | 3T3 Cells | HSF | ||
---|---|---|---|---|
1 | >2000 | 210.2 ± 20 | 708.7 ± 44.3 | 557.1 ± 71 |
2 | 1100 ± 30 | 55.3 ± 40 | 323.2 ± 49.6 | 288.6 ± 35.0 |
3 | 760 ± 40 | 33.7 ± 10 | 228.4 ± 43.7 | 124.8 ± 101.4 |
4 | 500 ± 100 | 25 ± 10 | 185.4 ± 77.1 | 155.1 ± 64 |
5 | >2000 | 403 ± 19 | 1280 ± 45.8 | 1436.8 ± 31.2 |
6 | >2000 | 327.3 ± 46 | 1262 ± 12.4 | 605.8 ± 95.6 |
7 | >2000 | 107.6 ± 56.7 | 1141 ± 84.8 | 486.0 ± 61 |
8 | >2000 | 76.6 ± 48.4 | 598.1 ± 50.6 | 418.3 ± 195.4 |
9 | 1200 ± 210 | 46.7 ± 20 | 193.2 ± 29.1 | 199.5 ± 34.6 |
Bacteria | Antibiotic Resistance | Susceptibility |
---|---|---|
Acinetobacter baumanii (strains 2091, 2092, 2097, 2102, 2110) | amikacin, levofloxacin, imipenem, meropenem, trimethoprim/sulfamethoxazole | 3—S 7—S 9—S |
Pseudomonas aeruginosa (strains 2095, 2175) | ceftazidime, imipenem, meropenem, levofloxacin, amikacin | 3—S 7—S 9—S |
Staphylococcus aureus (MRSA-resistant strains 2103, 2126, 2174) | methicillin, cefoxitin, erythromycin, clindamycin, levofloxacin | 3—S 7—S 9—S |
Klebsiella pneumonia (strains 2120, 2173) | amoxiclav, ceftazidime, cefepime, meropenem, amikacin, levofloxacin | 3—S 7—S 9—S |
Klebsiella pneumonia (strains 2094, 2149) | amoxiclav, ceftazidime, cefepime, meropenem, amikacin, levofloxacin | 3—S 7—R 9—R |
Klebsiella pneumonia (mucoid strain 2128) | amoxiclav, ceftazidime, cefepime, meropenem, amikacin, levofloxacin | 3—S 7—R 9—R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemtarev, A.V.; Kuznetsova, E.V.; Yergeshov, A.A.; Eflova, D.S.; Ishkaeva, R.A.; Valiullina, I.R.; Mironov, V.F.; Salakhieva, D.V.; Abdullin, T.I. Synthesis and Comparative Study of the Structure and Antibacterial Activity of Polygalacturonate Complexes with Ionic and Nanoparticulate Silver. Polymers 2025, 17, 2798. https://doi.org/10.3390/polym17202798
Nemtarev AV, Kuznetsova EV, Yergeshov AA, Eflova DS, Ishkaeva RA, Valiullina IR, Mironov VF, Salakhieva DV, Abdullin TI. Synthesis and Comparative Study of the Structure and Antibacterial Activity of Polygalacturonate Complexes with Ionic and Nanoparticulate Silver. Polymers. 2025; 17(20):2798. https://doi.org/10.3390/polym17202798
Chicago/Turabian StyleNemtarev, Andrey V., Elena V. Kuznetsova, Abdulla A. Yergeshov, Darya S. Eflova, Rezeda A. Ishkaeva, Inna R. Valiullina, Vladimir F. Mironov, Diana V. Salakhieva, and Timur I. Abdullin. 2025. "Synthesis and Comparative Study of the Structure and Antibacterial Activity of Polygalacturonate Complexes with Ionic and Nanoparticulate Silver" Polymers 17, no. 20: 2798. https://doi.org/10.3390/polym17202798
APA StyleNemtarev, A. V., Kuznetsova, E. V., Yergeshov, A. A., Eflova, D. S., Ishkaeva, R. A., Valiullina, I. R., Mironov, V. F., Salakhieva, D. V., & Abdullin, T. I. (2025). Synthesis and Comparative Study of the Structure and Antibacterial Activity of Polygalacturonate Complexes with Ionic and Nanoparticulate Silver. Polymers, 17(20), 2798. https://doi.org/10.3390/polym17202798