Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Nano-ZnO
2.2. Experimental Methods
2.2.1. Preparation Process
2.2.2. Asphalt Aging Test
2.2.3. Dynamic Shear Rheology Test
2.2.4. FTIR Test
2.2.5. GPC Test
2.2.6. AFM Test
3. Results and Discussion
3.1. Rheological Properties
3.1.1. Changes in Rheological Parameters of Different Asphalt Samples
3.1.2. Evolution of the Aging Index
3.2. FTIR Spectroscopy Analysis
3.2.1. Changes in FTIR of Different Types of Asphalt
3.2.2. Functional Group Index Changes
3.3. Molecular-Scale Evolution Analysis
3.4. Atomic Force Microscopy Analysis
3.4.1. Nanomorphology
3.4.2. Nanomorphological Parameters
4. Conclusions
5. Challenges and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Xiao, F.; Toraldo, E.; Crispino, M.; Ketabdari, M. Effect of crumb rubber and reclaimed asphalt pavement on viscoelastic property of asphalt mixture. J. Clean. Prod. 2023, 428, 139422. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wen, Y.; Cheng, H.; Hao, G.; Wang, J. Quantitative analysis of oxidative aging effects on the fatigue resistance of asphalt mixtures based on the simplified viscoelastic continuum damage (S-VECD) model. Int. J. Fatigue 2023, 177, 107916. [Google Scholar] [CrossRef]
- Tang, D.; Zhao, Y.; Han, D.; Pan, Y.; Xie, Y. Microstructure of Virgin, aged and recycled asphalt based on small-angle X-ray scattering. Constr. Build. Mater. 2023, 409, 134002. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Tan, B.; Li, Q.; Xu, F. Evaluation on recycling effect of a novel rejuvenator combined with fresh asphalt on field-aged SBS modified asphalt by rheological and micro characteristics. Constr. Build. Mater. 2023, 392, 131875. [Google Scholar] [CrossRef]
- Jameel, M.S.; Khan, A.H.; Kahlid, B.; Raza, A.; Zaidi, S.B.A.; Ali, B.; Ouni, M.H.E.I. MATLAB image analysis approach for adhesion and moisture susceptibility assessment of modified asphalt concrete. Constr. Build. Mater. 2023, 402, 133025. [Google Scholar] [CrossRef]
- Xie, H.; Liu, Y.; Long, Z.; Li, Z.; Guo, N.; Dai, B.; Yang, H.; Xu, F.; Jin, D.; You, L. Adhesion mechanisms of SBS modified asphalt mixtures: Molecular dynamics and density functional theory analysis under aging and chloride erosion. Constr. Build. Mater. 2025, 483, 141748. [Google Scholar] [CrossRef]
- Rasool, R.T.; Wang, S.; Zhang, Y.; Li, Y.; Zhang, G. Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber. Constr. Build. Mater. 2017, 145, 126–134. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Wang, H.; Wu, S. Synthesis of different antioxidant intercalated layered double hydroxides and their enhancement on aging resistance of SBS modified asphalt mixture. Constr. Build. Mater. 2024, 455, 139229. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Tian, Z.; Zhao, Y.; Yang, J.; Zhang, W. UV aging resistance improvement of SBS modified asphalt binder by organic layered double hydroxide and naphthenic oil: Its preparation, properties and mechanism. Constr. Build. Mater. 2024, 449, 138404. [Google Scholar] [CrossRef]
- Ren, X.; Sha, A.; Jiang, W.; Wu, W.; Jiao, W.; Li, J.; Li, J. Effect of EVA on the rheological properties of SBR-modified asphalt binder and its behavioral evolution during the thermo-oxidative aging process. Constr. Build. Mater. 2024, 454, 139159. [Google Scholar] [CrossRef]
- Ziari, H.; Moniri, A.; Bahri, P.; Saghafi, Y. The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Constr. Build. Mater. 2019, 224, 89–98. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Zhou, H.; Hu, W.; Polaczyk, P.; Huang, B. Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability. J. Clean. Prod. 2022, 334, 130102. [Google Scholar] [CrossRef]
- Xin, X.; Yao, Z.; Shi, J.; Liang, M.; Jiang, H.; Zhang, J.; Zhang, X.; Yao, K. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr. Build. Mater. 2020, 262, 120100. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.-M.; Wu, S.-J.; Wang, H.-R.; Liu, X.-C.; Sun, H.-D.; Fan, L. Effect of montmorillonite modification on resistance to thermal oxidation aging of asphalt binder. Case Stud. Constr. Mater. 2022, 16, e00971. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Z.; Gao, Y.; Liu, L.; Xiang, S. Study on UV aging resistance of nano-TiO2/montmorillonite/styrene-butadiene rubber composite modified asphalt based on rheological and microscopic properties. Constr. Build. Mater. 2021, 301, 124108. [Google Scholar] [CrossRef]
- He, Z.; Xie, T.; Yu, H.; Ge, J.; Dai, W. Evaluation of quantum dot composite graphene/Titanium oxide enhanced UV aging resistance modified asphalt. Constr. Build. Mater. 2023, 408, 133732. [Google Scholar] [CrossRef]
- Zhu, Q.; He, Z.; Lu, Y.; Zhang, X. The influence of zinc oxide-silicate composites on the aging resistance of asphalt. Alex. Eng. J. 2024, 93, 288–294. [Google Scholar] [CrossRef]
- Zhu, C.; Li, D.; Zhang, H.; Wang, Z.; Li, J. Synergistic effect of surface modified nano-zinc oxide and organic vermiculite on long-term ultraviolet and thermal-oxidative aging resistance of different asphalt binders. Constr. Build. Mater. 2023, 409, 133832. [Google Scholar] [CrossRef]
- Du, P.; Long, J.; Duan, H.; Luo, H.; Zhang, H. Laboratory performance and aging resistance evaluation of zinc oxide/expanded vermiculite composite modified asphalt binder and mixture. Constr. Build. Mater. 2022, 358, 129385. [Google Scholar] [CrossRef]
- JTG E20-2011; Test Procedure for Asphalt and Asphalt Mixture of Highway Engineering. Ministry of Communications of the People’s Republic of China: Beijing, China, 2011.
- Roy, A.; Polarz, S.; Rabe, S.; Rellinghaus, B.; Zähres, H.; Kruis, F.E.; Driess, M. First Preparation of Nanocrystalline Zinc Silicate by Chemical Vapor Synthesis Using an Organometallic Single-Source Precursor. Chem.-A Eur. J. 2004, 10, 1565–1575. [Google Scholar] [CrossRef]
- Duan, H.; Kuang, H.; Zhang, H.; Liu, J.; Luo, H.; Cao, J. Investigation on microstructure and aging resistance of bitumen modified by zinc oxide/expanded vermiculite composite synthesized with different methods. Fuel 2022, 324, 124590. [Google Scholar] [CrossRef]
- Barabaszová, K.Č.; Holešová, S.; Šulcová, K.; Hundáková, M.; Thomasová, B. Effects of ultrasound on zinc oxide/vermiculite/chlorhexidine nanocomposite preparation and their antibacterial activity. Nanomaterials 2019, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Henglong, Z.; Haihui, D.; Yao, L. Use of Synergistie Effeet of Zine Oxide/Expanded Vermiculite Composite to Retard Asphalt Aging Behavior. China J. Highw. Transp. 2024, 37, 183–196. [Google Scholar]
- Liu, J.; Wang, Z.; Luo, R.; Bian, G.; Liang, Q.; Yan, F. Changes of components and rheological properties of bitumen under dynamic thermal aging. Constr. Build. Mater. 2021, 303, 124501. [Google Scholar] [CrossRef]
- Liu, J.; Qi, L.; Wang, X.; Li, M.; Wang, Z. Influence of aging induced by mutation in temperature on property and microstructure development of asphalt binders. Constr. Build. Mater. 2022, 319, 126083. [Google Scholar] [CrossRef]
- Lu, L.X.; Ulf, I. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Gang, L.; Erik, N.; Jozef, K.; Leegwater, G.; van de Ven, M. Rheological and chemical evaluation on the ageing properties of SBS polymer modified bitumen: From the laboratory to the field. Constr. Build. Mater. 2014, 51, 244–248. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Wang, Z.; Jing, H.; Yang, B. Investigations on Adhesion Characteristics between High-Content Rubberized Asphalt and Aggregates. Polymers 2022, 14, 5474. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, R.; Wang, X.; Ren, H.; Zhou, Z. Synergistic diffusion mechanisms of rejuvenator-antioxidant systems in aged asphalt: From penetration to molecular interactions. Fuel 2026, 404, 136295. [Google Scholar] [CrossRef]
- Xu, S.; Niu, X.; Wang, J.; Cai, S.; Ma, H.; Fang, L.; Liulin, S.; Zhang, C. Investigation on aging resistance performance of asphalt modified with organic layered double hydroxides and antioxidants. Colloids Surf. A Physicochem. Eng. Asp. 2025, 725, 137605. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Jing, H.; Zhang, X.; Shi, W.; Zhou, X.; Yuan, L.; Wang, X.; Hoff, I. Sustainable Utilization of Recycled Waste in High-Viscosity Asphalt Binders: Case for Improvement in Aging Resistance. J. Mater. Civ. Eng. 2023, 35, 04023280. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; You, Q.; Ling, J.; Zhang, J.; Chineche, E.B.; Yang, X. Insight into the effect of photo-oxidative aging level on the nano-ZnO/SBR asphalt performance: Molecular dynamics simulation. Constr. Build. Mater. 2025, 489, 142314. [Google Scholar] [CrossRef]
Parameter | Asphalt | Test Method |
---|---|---|
Penetration (25 °C, 100 g, 5 s; 0.1 mm) | 91 | T0604 |
Ductility (15 °C, 5 cm/min; cm) | >100 | T0605 |
Softening point (°C) | 46.5 | T0606 |
Density (g/cm3) | 1.02 | T0603 |
Solubility (%) | 99.7 | T0607 |
Flash point (°C) | 296 | T0611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, B.; Shen, Y.; Liu, J.; Li, J.; Jing, H.; Ren, S. Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters. Polymers 2025, 17, 2774. https://doi.org/10.3390/polym17202774
An B, Shen Y, Liu J, Li J, Jing H, Ren S. Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters. Polymers. 2025; 17(20):2774. https://doi.org/10.3390/polym17202774
Chicago/Turabian StyleAn, Baifu, Yang Shen, Jianan Liu, Junmeng Li, Haosen Jing, and Shisong Ren. 2025. "Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters" Polymers 17, no. 20: 2774. https://doi.org/10.3390/polym17202774
APA StyleAn, B., Shen, Y., Liu, J., Li, J., Jing, H., & Ren, S. (2025). Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters. Polymers, 17(20), 2774. https://doi.org/10.3390/polym17202774