Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications
Abstract
1. Introduction
2. Sources and Preparation of Fungal and Microalgal Chitin
2.1. Fungal Chitin
2.1.1. Chitin from Mushrooms
2.1.2. Chitin from Yeast
2.1.3. Chitin from Other Fungi
2.2. Microalgal Chitin
2.2.1. Chitin from Diatoms
2.2.2. Chitin from Green Microalgae
3. Structural Differences in Fungal and Microalgal Chitin
3.1. Molecular Structural Differences
3.1.1. Degree of Polymerization (DP)
3.1.2. Degree of Acetylation (DA)
Source Type | Species | DP (Degree of Polymerization) | DA (%) | Chitin Polymorph | CI (%) | Morphology | Comparison with Crustacean Chitin | References |
---|---|---|---|---|---|---|---|---|
Mushroom | Agaricus bisporus | High (4.53 × 102 kDa) | 66–78.82 | α | 59–77 | Fibers 20–80 nm wide, μm long | Lower DA, easier nanofibrillation | [20,29,38] |
Mushroom | Pleurotus ostreatus | Medium (1.6 × 105 Da) | 31.7–80 | α | 58–73 | Nanofibers ~28 nm wide | Lower CI, suitable for bioactivity | [43,79] |
Yeast | Komagataella pastoris | Medium (4.9 × 105 Da) | 33.9–61.3 | α | 23–50 | Dense fibril layers | Low DA, genetically tunable | [53,54] |
Other Fungi | Rhizopus delemar | High | 53–98.7 | α/β | 28–82 | Polymorphic structure | Multiple polymorphs, easier deacetylation | [61] |
Other Fungi | Hericium erinaceus | High (~337 nm long) | Not specified | α | 49.2–70.8 | Nanofibers 6.4 nm wide, 337 nm long | High aspect ratio, suitable for gels | [41] |
Diatom | Thalassiosira rotula | High (5–30 µm long) | High | β | Not specified | Microrods 69–111 nm wide, 14 µm long | Open structure, reactive/insertable | [15] |
Diatom | Cyclotella cryptica | High (15–20 µm long) | Not specified | β | Lower | Fibers 48–58 nm wide, 15–20 µm long | More soluble, suitable for hemostasis | [50,65] |
Green Microalgae | Chlorella vulgaris | Low | Not specified | β | Not specified | Amorphous layered structure | Stress-induced, layered barrier | [51] |
3.2. Crystalline Structural Differences
3.2.1. Crystal Allomorphs
3.2.2. Crystallinity Index (CI) and Thermal Stability
3.2.3. Crystallite Parameters
3.3. Micro-Morphological Differences
3.3.1. Fungal Chitin
3.3.2. Microalgal Chitin
3.4. Causes of Structural Differences
3.4.1. Metabolic Pathway Differences
3.4.2. Environmental Stress Responses
3.4.3. Comparison with Crustacean Chitin
4. Functional Properties of Fungal and Microalgal Chitin
4.1. Physicochemical Functional Properties
4.1.1. Solubility and Dispersibility
4.1.2. Water Absorption and Retention
4.1.3. Mechanical Properties
4.1.4. Rheological Properties
4.1.5. Emulsifying and Colloidal Properties
4.2. Bioactive Functional Properties
4.2.1. Antimicrobial Activity
4.2.2. Biocompatibility
4.2.3. Biodegradability
4.2.4. Antioxidant Activity
4.2.5. Antitumor and Anti-Inflammatory Activities
4.2.6. Phytotoxicity and Cytotoxicity
4.2.7. Bioactive Encapsulation and Oxidative Stability
4.2.8. Hemostatic Activity
4.3. Core Mechanisms of Structure–Function Relationships
4.3.1. Molecular-Level Mechanisms
4.3.2. Microscopic-Level Mechanisms
5. Biomedical Applications of Fungal and Microalgal Chitin
5.1. Wound Healing and Hemostatic Dressings
5.2. Drug Delivery and Controlled Release Systems
5.3. Tissue Engineering and Biomedical Scaffolds
5.4. Antimicrobial and Antioxidant Biomedical Coatings
5.5. Anticancer and Anti-Inflammatory Therapies
5.6. Biodegradable and Sustainable Medical Materials
6. Conclusions
7. Limitations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. In vivo immunological activity of chitosan-derived nanoparticles. Int. J. Biol. Macromol. 2024, 262, 130105. [Google Scholar] [CrossRef]
- Ge, X.; Zhu, S.; Yang, H.; Wang, X.; Li, J.; Liu, S.; Xing, R.; Li, P.; Li, K. Impact of O-acetylation on chitin oligosaccharides modulating inflammatory responses in LPS-induced RAW264.7 cells and mice. Carbohydr. Res. 2024, 542, 109177. [Google Scholar] [CrossRef]
- Mokhtari-Hosseini, Z.-B.; Hatamian-Zarmi, A.; Mohammadnejad, J.; Ebrahimi-Hosseinzadeh, B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep. Biochem. Biotechnol. 2018, 48, 662–670. [Google Scholar] [CrossRef]
- Kawasaki, T.; Tanaka, M.; Fujie, M.; Usami, S.; Sakai, K.; Yamada, T. Chitin synthesis in chlorovirus CVK2-infected chlorella cells. Virology 2002, 302, 123–131. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Liu, L.; Zhang, X.; Hou, Y.; Zhao, L.J.W.; Valorization, B. Characterization of chitin-glucan complex of ganoderma lucidum extract and its application as hemostatic hydrogel. Waste Biomass Valorization 2022, 13, 3297–3308. [Google Scholar] [CrossRef]
- Lehocký, M. Environmental Applications of Chitosan Derivatives and Chitosan Composites. Polymers 2025, 17, 2583. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V.; Anand, S.; Phukan, D.; Pandey, N. Mixed organic and inorganic nitrogen sources enhance chitosan yield in novel isolates of Penicillium. Int. J. Biol. Macromol. 2024, 256, 128115. [Google Scholar] [CrossRef]
- Rahman, M.A.; Bhuiyan, S.; Shakil, S.; Hossain, S. Comparative study on chitin content of Bangladeshi edible and medicinal mushrooms. J. Biomed Res. 2023, 4, 25–28. [Google Scholar] [CrossRef]
- Zanchetta, E.; Mercier, B.; Frabboni, M.; Damergi, E.; Ludwig, C.; Pick, H. Purification of Cellulose and Chitin Polymers and Other Value-Added Products from the Microalga Chlorella vulgaris Using a Green Biorefinery Process. Fermentation 2025, 11, 120. [Google Scholar] [CrossRef]
- Grifoll, V.; Bravo, P.; Pérez, M.N.; Pérez-Clavijo, M.; García-Castrillo, M.; Larrañaga, A.; Lizundia, E. Environmental Sustainability and Physicochemical Property Screening of Chitin and Chitin-Glucan from 22 Fungal Species. ACS Sustain. Chem. Eng. 2024, 12, 7869–7881. [Google Scholar] [CrossRef]
- Arcidiacono, S.; Kaplan, D. Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol. Bioeng. 1992, 39, 281–286. [Google Scholar] [CrossRef]
- Nguyen, A.; Tunn, I.; Penttilä, M.; Frey, A.D. Enhancing Chitin Production as a Fermentation Byproduct through a Genetic Toolbox That Activates the Cell Wall Integrity Response. ACS Synth. Biol. 2025, 14, 113–128. [Google Scholar] [CrossRef]
- Lee, J.; Park, Y. Self-healing properties of fibers constructed from mushroom-derived chitinous polymers. ACS Sustain. Chem. Eng. 2023, 11, 2959–2967. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Noishiki, Y.; Wada, M. X-ray structure of anhydrous β-chitin at 1 Å resolution. Macromolecules 2011, 44, 950–957. [Google Scholar] [CrossRef]
- Ludwig, J.; Kauffmann, F.; Laschat, S.; Weiss, I.M. Ro (a) d to new functional materials: Sustainable isolation of high aspect ratio β-chitin microrods from marine algae. Bioengineering 2025, 12, 969. [Google Scholar] [CrossRef]
- Spinde, K.; Kammer, M.; Freyer, K.; Ehrlich, H.; Vournakis, J.N.; Brunner, E. Biomimetic Silicification of Fibrous Chitin from Diatoms. Chem. Mater. 2011, 23, 2973–2978. [Google Scholar] [CrossRef]
- Wu, M.; Sawada, D.; Ogawa, Y.; Kimura, S.; Wada, M.; Kuga, S. Crystalline alignment of metal ions templated by β-chitin ester. Cellulose 2013, 20, 2757–2763. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef]
- Frey, B.; Vilarino, A.; Schüepp, H.; Arines, J. Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 1994, 26, 711–717. [Google Scholar] [CrossRef]
- Zannat, A.; Eason, I.; Wylie, B.; Rogers, R.D.; Berton, P.; Shamshina, J.L. Comparative analysis of chitin isolation techniques from mushrooms: Toward sustainable production of high-purity biopolymer. Green Chem. 2025, 27, 3217–3233. [Google Scholar] [CrossRef]
- Liang, B.; Song, W.; Liu, S.; Li, K.; Yu, H.; Li, P.; Xing, R. Improving the performance of chitin bioprocessing: Pretreating chitin and optimizing active enzyme. Polym. Rev. 2025, 65, 777–813. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kimura, S.; Wada, M. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J. Struct. Biol. 2011, 176, 83–90. [Google Scholar] [CrossRef]
- Izadi, H.; Asadi, H.; Bemani, M. Chitin: A comparison between its main sources. Front. Mater. 2025, 12, 1537067. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Beier, S.; Bertilsson, S. Bacterial chitin degradation—Mechanisms and ecophysiological strategies. Front. Microbiol. 2013, 4, 149. [Google Scholar] [CrossRef]
- Nasirov, F.; Abbasov, V.; Suleymanova, E.; Aslanbeyli, A.; Ahmedova, S. Chitin and chitosan-biopolymer materials of the 21st century. Process. Petrochem. Oil Refin. 2023, 24, 778–824. [Google Scholar] [CrossRef]
- Mersmann, L.; Souza, V.G.L.; Fernando, A.L. Green processes for chitin and chitosan production from insects: Current state, challenges, and opportunities. Polymers 2025, 17, 1185. [Google Scholar] [CrossRef]
- Hassainia, A.; Satha, H.; Boufi, S. Chitin from Agaricus bisporus: Extraction and characterization. Int. J. Biol. Macromol. 2018, 117, 1334–1342. [Google Scholar] [CrossRef]
- Zannat, A.; Shamshina, J.L. Chitin isolation from crustaceans and mushrooms: The need for quantitative assessment. Carbohydr. Polym. 2025, 348, 122882. [Google Scholar] [CrossRef]
- Windels, A.; Declerck, L.; Snoeck, S.; Demeester, W.; Guidi, C.; Desmet, T.; De Mey, M. Bioconversion of mushroom chitin-rich waste into valuable chitin oligosaccharides using a combined approach of biocatalysis and precision fermentation. J. Agric. Food Chem. 2025, 73, 9769–9781. [Google Scholar] [CrossRef]
- Muñoz, J.C.; Grifoll, V.; Pérez-Clavijo, M.; Saiz-Santos, M.; Lizundia, E. Techno-Economic Assessment of Chitin Nanofibrils Isolated from Fungi for a Pilot-Scale Biorefinery. ACS Sustain. Resour. Manag. 2024, 1, 42–53. [Google Scholar] [CrossRef]
- Ifuku, S.; Nomura, R.; Morimoto, M.; Saimoto, H.J.M. Preparation of chitin nanofibers from mushrooms. Materials 2011, 4, 1417–1425. [Google Scholar] [CrossRef]
- Larrañaga, A.; Bello-Álvarez, C.; Lizundia, E. Cytotoxicity and inflammatory effects of chitin nanofibrils isolated from fungi. Biomacromolecules 2023, 24, 5737–5748. [Google Scholar] [CrossRef]
- Karamchandani, B.M.; Maurya, P.A.; Awale, M.; Dalvi, S.G.; Banat, I.M.; Satpute, S.K. Optimization of fungal chitosan production from Cunninghamella echinulata using statistical designs. 3 Biotech 2024, 14, 82. [Google Scholar] [CrossRef]
- Mirpourian, N.S.; Fathi, M.; Maleky, F. Production of starch edible films using chitin nanocrystals extracted from mushroom. Int. J. Food Sci. Technol. 2024, 59, 9402–9416. [Google Scholar] [CrossRef]
- Camele, I.; Mohamed, A.A.; Ibrahim, A.A.; Elshafie, H.S. Biochemical characterization and disease control efficacy of pleurotus eryngii-derived chitosan—An in vivo study against monilinia laxa, the causal agent of plum brown rot. Plants 2024, 13, 2598. [Google Scholar] [CrossRef]
- Kaya, E.; Kahyaoglu, L.N.; Sumnu, G. Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. Int. J. Biol. Macromol. 2022, 221, 536–546. [Google Scholar] [CrossRef]
- Alimi, B.A.; Pathania, S.; Wilson, J.; Duffy, B.; Frias, J.M. Sustainable enzymatic extraction of high-purity chitin from button mushroom (Agaricus bisporus) off-production waste: Influence of alkaline pre-treatment on physicochemical properties. Future Foods 2025, 11, 100657. [Google Scholar] [CrossRef]
- Fadhil, A.; Mous, E. Some characteristics and functional properties of chitin produced from local mushroom Agaricus bisporus. IOP Conf. Ser. Earth Environ. Sci. 2021, 761, 012127. [Google Scholar] [CrossRef]
- Narkevicius, A.; Parker, R.M.; Ferrer-Orri, J.; Parton, T.G.; Lu, Z.; van de Kerkhof, G.T.; Frka-Petesic, B.; Vignolini, S. Revealing the Structural Coloration of Self-Assembled Chitin Nanocrystal Films. Adv. Mater. 2022, 34, 2203300. [Google Scholar] [CrossRef]
- Liao, J.; Huang, H. Preparation, Characterization and Gelation of a Fungal Nano Chitin Derived from Hericium erinaceus Residue. Polymers 2022, 14, 474. [Google Scholar] [CrossRef]
- Almeida, C.F.; Amorim, I.; Silva, C.G.; Lopes, J.C.B.; Manrique, Y.A.; Dias, M.M. Recovery of chitin from Agaricus bisporus mushrooms: Influence of extraction parameters and supercritical CO2 treatment on fresh mushrooms and production residues. Molecules 2025, 30, 1479. [Google Scholar] [CrossRef]
- Rad, S.S.; Sayyari, M.; Torabi, M.; Zolfigol, M.A. Fabrication and investigation of chitosan-based edible coating derived mushroom substrates: Efficient performance on storage and improving postharvest quality of strawberry. Int. J. Biol. Macromol. 2025, 309, 142731. [Google Scholar] [CrossRef]
- Zin, M.; Shamsudin, N.; Ali, F.; Nawawi, W. Chitin fiber from mushroom as reinforcement for biobased polymer. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1192, 012016. [Google Scholar] [CrossRef]
- Sun, C.; Yue, P.; Chen, R.; Wu, S.; Ye, Q.; Weng, Y.; Liu, H.; Fang, Y. Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr. Polym. 2022, 291, 119553. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Zhou, M.; Xia, Q.; Fan, L.; Zhao, L. Enhanced bioproduction of chitin in engineered Pichia pastoris. Food Biosci. 2022, 47, 101606. [Google Scholar] [CrossRef]
- Günal-Köroğlu, D.; Karabulut, G.; Mohammadian, F.; Can Karaca, A.; Capanoglu, E.; Esatbeyoglu, T. Production of yeast cell wall polysaccharides-β-glucan and chitin by using food waste substrates: Biosynthesis, production, extraction, and purification methods. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70161. [Google Scholar] [CrossRef]
- Abasian, L.; Shafiei Alavijeh, R.; Satari, B.; Karimi, K. Sustainable and effective chitosan production by dimorphic fungus mucor rouxii via replacing yeast extract with fungal extract. Appl. Biochem. Biotechnol. 2020, 191, 666–678. [Google Scholar] [CrossRef]
- El-Feki, K.M.A.; El-Metwally, M.M.; Taha, T.H.; Mohammed, Y.M.M.; Al-Otibi, F.O.; Fakhouri, A.S.; Menaa, F.; Saber, W.I.A. Artificial neural network-based fungal chitin production for submicron-chitosan synthesis: Effects on bioremediation for heavy metal pollution. Int. J. Biol. Macromol. 2025, 314, 144271. [Google Scholar] [CrossRef]
- Ozkan, A. Screening diatom strains belonging to Cyclotella genus for chitin nanofiber production under photobioreactor conditions: Chitin productivity and characterization of physicochemical properties. Algal Res. 2023, 70, 103015. [Google Scholar] [CrossRef]
- Zanchetta, E.; Ollivier, M.; Taing, N.; Damergi, E.; Agarwal, A.; Ludwig, C.; Pick, H. Abiotic stress approaches for enhancing cellulose and chitin production in Chlorella vulgaris. Int. J. Biol. Macromol. 2025, 309, 142969. [Google Scholar] [CrossRef]
- Chuene, L.T.; Ndlovu, T.; Rossouw, D.; Naidoo-Blassoples, R.K.; Bauer, F.F. Isolation and characterization of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting. FEMS Yeast Resear c h 2024, 24, foae028. [Google Scholar] [CrossRef]
- Araújo, D.; Alves, V.D.; Marques, A.C.; Fortunato, E.; Reis, M.A.M.; Freitas, F. Low temperature dissolution of yeast chitin-glucan complex and characterization of the regenerated polymer. Bioengineering 2020, 7, 28. [Google Scholar] [CrossRef]
- Farinha, I.; Duarte, P.; Pimentel, A.; Plotnikova, E.; Chagas, B.; Mafra, L.; Grandfils, C.; Freitas, F.; Fortunato, E.; Reis, M.A. Chitin–glucan complex production by Komagataella pastoris: Downstream optimization and product characterization. Carbohydr. Polym. 2015, 130, 455–464. [Google Scholar] [CrossRef]
- Antunes, M.; Mota, M.N.; Fernandes, P.A.R.; Coelho, E.; Coimbra, M.A.; Sá-Correia, I. Cell wall alterations occurring in an evolved multi-stress tolerant strain of the oleaginous yeast Rhodotorula toruloides. Sci. Rep. 2024, 14, 23366. [Google Scholar] [CrossRef]
- Feofilova, E.; Nemtsev, D.; Tereshina, V.; Memorskaya, A.J.A.B. Developmental change of the composition and content of the chitin-glucan complex in the fungus Aspergillus niger. Appl. Biochem. Microbiol. 2006, 42, 545–549. [Google Scholar] [CrossRef]
- Marchezi, G.; Concolato, G.; Colla, L.M.; Piccin, J.S. Obtaining chitin through the optimization of submerged fermentation conditions of the fungus Aspergillus niger. 2025; Advanced online publication. [Google Scholar] [CrossRef]
- Barthel, L.; Cairns, T.; Duda, S.; Müller, H.; Dobbert, B.; Jung, S.; Briesen, H.; Meyer, V. Breaking down barriers: Comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. Fungal Biol. Biotechnol. 2024, 11, 3. [Google Scholar] [CrossRef]
- El-Far, N.A.; Shetaia, Y.M.; Ahmed, A.M.; Amin, R.M.; Abdou, D.A.M. Statistical optimization of chitosan production using marine-derived Penicillium chrysogenum MZ723110 in Egypt. Egypt. J. Aquat. Biol. Fish. 2021, 25, 799–819. [Google Scholar] [CrossRef]
- Abo Elsoud, M.M.; Mohamed, S.S.; Selim, M.S.; Sidkey, N.M. Characterization and optimization of chitosan production by aspergillus terreus. Arab. J. Sci. Eng. 2023, 48, 93–106. [Google Scholar] [CrossRef]
- Cheng, Q.; Dickwella Widanage, M.C.; Yarava, J.R.; Ankur, A.; Latgé, J.-P.; Wang, P.; Wang, T. Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR. Nat. Commun. 2024, 15, 8295. [Google Scholar] [CrossRef]
- Salehinik, F.; Behzad, T.; Zamani, A.; Bahrami, B. Extraction and characterization of fungal chitin nanofibers from Mucor indicus cultured in optimized medium conditions. Int. J. Biol. Macromol. 2021, 167, 1126–1134. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, W.; Chen, S.-l. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J. Appl. Microbiol. 2008, 105, 1521–1528. [Google Scholar] [CrossRef]
- Goyzueta, M.L.D.; Noseda, M.D.; Bonatto, S.J.R.; de Freitas, R.A.; de Carvalho, J.C.; Soccol, C.R. Production, characterization, and biological activity of a chitin-like EPS produced by Mortierella alpina under submerged fermentation. Carbohydr. Polym. 2020, 247, 116716. [Google Scholar] [CrossRef]
- Su, C.; Jiang, C.; Lin, J.; Liu, J.; Zhan, H.; Che, S.; Chen, X.; Feng, C. Optimization of preparation conditions for β-chitosan derived from diatom biomanufacturing using response surface methodology. Int. J. Biol. Macromol. 2024, 279, 135233. [Google Scholar] [CrossRef]
- Chiriboga, O.G.; LeDuff, P.; Rorrer, G.L. Extracellular chitin nanofibers from marine diatoms. In Encyclopedia of Marine Biotechnology; Wiley: Hoboken, NJ, USA, 2020; pp. 1083–1092. [Google Scholar]
- LeDuff, P.; Rorrer, G.L. Soluble germanium addition to silicon-starved cultures of the diatom Cyclotella sp. limits β-chitin nanofiber formation. J. Appl. Phycol. 2020, 32, 901–907. [Google Scholar] [CrossRef]
- Chiriboga, O.; Rorrer, G.L. Effects of nitrogen delivery on chitin nanofiber production during batch cultivation of the diatom Cyclotella sp. in a bubble column photobioreactor. J. Appl. Phycol. 2018, 30, 1575–1581. [Google Scholar] [CrossRef]
- Chiriboga, O.; Rorrer, G.L. Phosphate addition strategies for enhancing the co-production of lipid and chitin nanofibers during fed-batch cultivation of the diatom Cyclotella sp. Algal Res. 2019, 38, 101403. [Google Scholar] [CrossRef]
- Ozkan, A.; Rorrer, G.L. Effects of light intensity on the selectivity of lipid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp. Algal Res. 2017, 25, 216–227. [Google Scholar] [CrossRef]
- Ozkan, A.; Rorrer, G.L. Lipid and chitin nanofiber production during cultivation of the marine diatom Cyclotella sp. to high cell density with multistage addition of silicon and nitrate. J. Appl. Phycol. 2017, 29, 1811–1818. [Google Scholar] [CrossRef]
- Novis, P.M.; Sales, R.E.; Gordon, K.; Manning, N.; Duleba, M.; Ács, É.; Dressler, M.; Schallenberg, M. Lindavia intermedia (Bacillariophyceae) and Nuisance lake Snow in New Zealand: Chitin Content and Quantitative PCR Methods to Estimate Cell Concentrations and Expression of Chitin Synthase1. J. Phycol. 2020, 56, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Rakkhumkaew, N.; Kawasaki, T.; Fujie, M.; Yamada, T. Chitin synthesis by Chlorella cells infected by chloroviruses: Enhancement by adopting a slow-growing virus and treatment with aphidicolin. J. Biosci. Bioeng. 2018, 125, 311–315. [Google Scholar] [CrossRef]
- Crosino, A.; Moscato, E.; Blangetti, M.; Carotenuto, G.; Spina, F.; Bordignon, S.; Puech-Pagès, V.; Anfossi, L.; Volpe, V.; Prandi, C. Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Sci. Rep. 2021, 11, 3798. [Google Scholar] [CrossRef]
- Kaya, M.; Halıcı, M.G.; Duman, F.; Erdoğan, S.; Baran, T. Characterisation of α-chitin extracted from a lichenised fungus species Xanthoria parietina. Nat. Prod. Res. 2015, 29, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Akata, I.; Baran, T.; Menteş, A. Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys. 2015, 10, 162–168. [Google Scholar] [CrossRef]
- Kisaakye, J.; Beesigamukama, D.; Haukeland, S.; Subramanian, S.; Thiongo, P.K.; Kelemu, S.; Tanga, C.M. Chitin-enriched insect frass fertilizer as a biorational alternative for root-knot nematode (Meloidogyne incognita) management. Front. Plant Sci. 2024, 15, 1361739. [Google Scholar] [CrossRef]
- Hong, R.; Tong, S.; Chai, M.; Chen, W.; Liu, X.; Chen, Y.; Li, D. Enhancing Mycoprotein Yield: Metabolic Modulation of Chitin Synthase in Fusarium venenatum. J. Agric. Food Chem. 2024, 72, 27274–27283. [Google Scholar] [CrossRef] [PubMed]
- Aldhahrani, A. Physicochemical characteristics of chitosan extracted from Pleurotus ostreatus and its anticancer activity against the mda-mb-231 breast cancer cell line. Polymers 2025, 17, 1228. [Google Scholar] [CrossRef]
- Kramar, A.; González-Benito, J.; Nikolić, N.; Larrañaga, A.; Lizundia, E. Properties and environmental sustainability of fungal chitin nanofibril reinforced cellulose acetate films and nanofiber mats by solution blow spinning. Int. J. Biol. Macromol. 2024, 269, 132046. [Google Scholar] [CrossRef]
- Boureghda, Y.; Satha, H.; Bendebane, F. Chitin–glucan complex from Pleurotus ostreatus mushroom: Physicochemical characterization and comparison of extraction methods. Waste Biomass Valorization 2021, 12, 6139–6153. [Google Scholar] [CrossRef]
- Liang, S.; Wang, X.; Sun, S.; Xie, L.; Dang, X. Extraction of chitin from flammulina velutipes waste: A low-concentration acid pretreatment and Aspergillus niger fermentation approach. Int. J. Biol. Macromol. 2024, 273, 133224. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, A.; Rorrer, G.L. Effects of CO2 delivery on fatty acid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp. Algal Res. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Bamba, Y.; Ogawa, Y.; Saito, T.; Berglund, L.A.; Isogai, A. Estimating the strength of single chitin nanofibrils via sonication-induced fragmentation. Biomacromolecules 2017, 18, 4405–4410. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; González, M.; Benavides-Valenzuela, S.; Preza, X.; Paredes-Padilla, Y.A.; Castaño-Rivera, P.; Segura, R.; Durán-Lara, E.F.; Nesic, A. Active packaging based on hydroxypropyl methyl cellulose/fungal chitin nanofibers films for controlled release of ferulic acid. Polymers 2025, 17, 2113. [Google Scholar] [CrossRef]
- Chiriboga, N.O.G.; Rorrer, G.L. Control of chitin nanofiber production by the lipid-producing diatom Cyclotella sp. through fed-batch addition of dissolved silicon and nitrate in a bubble-column photobioreactor. Biotechnol. Prog. 2017, 33, 407–415. [Google Scholar] [CrossRef]
- Durkin, C.A.; Mock, T.; Armbrust, E.V. Chitin in diatoms and its association with the cell wall. Eukaryot. Cell 2009, 8, 1038–1050. [Google Scholar] [CrossRef]
- Baquero-Aznar, V.; Calvo, V.; González-Domínguez, J.M.; Maser, W.K.; Benito, A.M.; Salvador, M.L.; González-Buesa, J. Novel egg white protein–chitin nanocrystal biocomposite films with enhanced functional properties. Polymers 2025, 17, 2538. [Google Scholar] [CrossRef] [PubMed]
- Krake, S.; Conzelmann, C.; Heuer, S.; Dyballa, M.; Zibek, S.; Hahn, T. Production of chitosan from Aspergillus niger and quantitative evaluation of the process using adapted analytical tools. Biotechnol. Bioprocess Eng. 2024, 29, 942–954. [Google Scholar] [CrossRef]
- Bak, W.C.; Park, J.H.; Park, Y.A.; Ka, K.H. Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology 2014, 42, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, H.; Fathi, Z.; Cruz, C.D.; Abidnejad, R.; Tammela, P.; Niskanen, J.; Lizundia, E. Structure-property correlations and environmental impact assessment of sustainable antibacterial food packaging films reinforced with fungal chitin nanofibrils. Food Hydrocoll. 2025, 162, 110987. [Google Scholar] [CrossRef]
- Marđetko, N.; Kolakušić, A.; Trontel, A.; Novak, M.; Pavlečić, M.; Dobrinčić, A.; Petravić Tominac, V.; Šantek, B. Usage of the fungus mucor indicus and the bacterium Rhodovulum adriaticum in a biorefinery system for biochemical production on grass hydrolysates. Polymers 2025, 17, 369. [Google Scholar] [CrossRef]
- Li, H.; Xing, R.; Wang, Z.; Li, G. Advancements in xanthan gum-based film and coating for food packaging. Carbohydr. Polym. 2025, 356, 123409. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhu, F.; Li, G. Alginate-based active and intelligent packaging: Preparation, properties, and applications. Int. J. Biol. Macromol. 2024, 279, 135441. [Google Scholar] [CrossRef] [PubMed]
- Srihanam, P.; Phromsopha, T.; Sangdee, A.; Khotsaeng, N.; Lan, P.N.; Baimark, Y. Thermo-Compression of Thermoplastic Chitosan Films Reinforced with Microcrystalline Cellulose for Antibacterial Food Packaging Application. Polymers 2025, 17, 2460. [Google Scholar] [CrossRef] [PubMed]
- Dambuza, A.; Mokolokolo, P.P.; Makhatha, M.E.; Sibeko, M.A. Chitosan-Based Materials as Effective Materials to Remove Pollutants. Polymers 2025, 17, 2447. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xu, Y.; Wang, Z.; Zhou, W.; Yan, L.; Fan, X.; Liu, H. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem. Eng. J. 2020, 388, 124169. [Google Scholar] [CrossRef]
- Gao, H.; Zhong, Z.; Xia, H.; Hu, Q.; Ye, Q.; Wang, Y.; Chen, L.; Du, Y.; Shi, X.; Zhang, L. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater. Sci. 2019, 7, 2571–2581. [Google Scholar] [CrossRef]
- Moshfeghi Far, N.; Kramar, A.; González-Benito, J. Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging. Polymers 2025, 17, 2479. [Google Scholar] [CrossRef]
Source Type | Species | Extraction Method | Yield | Advantages/Limitations | References |
---|---|---|---|---|---|
Mushroom | Agaricus bisporus | NaOH alkaline treatment + ILs/DES + mechanical grinding | 7–20.2% | Low mineral content (2.5–7%), sustainable, high yield | [29,31] |
Mushroom | Filamentous Ascomycota | Alkaline treatment + TEMPO oxidation + Ca2+ cross-linking | 41.1–49% | High yield, suitable for hemostatic materials | [45] |
Yeast | Pichia pastoris | Hot alkaline extraction + genetic engineering optimization | 2.23 g/L | High yield, enhanced by engineering | [46,47,48] |
Other Fungi | Mucor rouxii | Alkaline extraction + enzymatic assistance + autolysate replacement | 0.135 g/g-AIM | High deacetylation, narrow MW distribution, cost-effective | [48] |
Other Fungi | Fusarium incarnatum | Alkaline deproteinization + KMnO4/oxalic acid + 50% NaOH deacetylation | 3.751 g/L | High yield, suitable for scale-up | [49] |
Diatom | Thalassiosira rotula | Water-based centrifugation + NaCl/EDTA wash + no chemical treatment | Not specified (high AR microrods) | Eco-friendly, no harsh chemicals, fast growth | [15] |
Diatom | Cyclotella cryptica | Urea/KOH freeze–thaw + ethanol precipitation + H2O2 depigmentation | 272–316 mg/L | High yield, suitable for biomaterials | [50] |
Green Microalgae | Chlorella vulgaris | Hot NaOH protein removal + acetic/nitric acid purification | 0.6% | CO2 fixation, no arable land, low yield | [51] |
Source Type | Species | Key Physicochemical Properties | Biological Activities | Biomedical Applications | Mechanisms/Advantages | References |
---|---|---|---|---|---|---|
Mushroom | Agaricus bisporus | Water absorption 674%, self-healing fibers, E = 3415 MPa | Antibacterial, antioxidant, immunomodulatory | Wound healing, hemostasis, packaging | H-bond self-healing, β-glucan enhances binding | [13,37] |
Mushroom | Filamentous Ascomycota | Water absorption 2400%, strength 175 kPa | Antibacterial, anticancer, anti-inflammatory | Hemostatic dressings, drug delivery | Rapid blood-triggered shape memory, Ca2+ promotes clotting | [36,45] |
Yeast | Pichia pastoris | Shear-thinning, high solubility | Biocompatible, immunomodulatory | Tissue engineering, drug delivery | Genetic engineering, waste utilization | [46,53] |
Other Fungi | Fusarium incarnatum | High solubility, nanoparticles | Antibacterial, biocompatible, degradable | Wound dressings, drug delivery, environmental remediation | Nano-size enhances contact killing | [49] |
Other Fungi | Ganoderma lucidum | Gel swelling 1181–1891%, high strength | Antibacterial, antioxidant, hemostatic | Hemostatic gels, tissue engineering | Porous 3D network, platelet adhesion | [5] |
Diatom | Cyclotellacryptica | High solubility, strength ~3 GPa | Antibacterial, hemostatic, biocompatible | Hemostatic dressings, drug delivery | β-type open structure, rapid hydration | [50,65] |
Diatom | Thalassiosirarotula | High aspect ratio, electrorheological | Antibacterial, biocompatible | Biocomposites, green packaging | Hierarchical structure, eco-friendly extraction | [15] |
Green Microalgae | Chlorella vulgaris | Strong water binding, biodegradable | Antioxidant, biocompatible | Sustainable packaging, wound coatings | Stress-induced layered structure, CO2 fixation | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Li, H.; Xing, R.; Li, R.; Gao, K.; Li, G.; Liu, S. Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications. Polymers 2025, 17, 2722. https://doi.org/10.3390/polym17202722
Yin L, Li H, Xing R, Li R, Gao K, Li G, Liu S. Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications. Polymers. 2025; 17(20):2722. https://doi.org/10.3390/polym17202722
Chicago/Turabian StyleYin, Lijing, Hang Li, Ronge Xing, Rongfeng Li, Kun Gao, Guantian Li, and Song Liu. 2025. "Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications" Polymers 17, no. 20: 2722. https://doi.org/10.3390/polym17202722
APA StyleYin, L., Li, H., Xing, R., Li, R., Gao, K., Li, G., & Liu, S. (2025). Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications. Polymers, 17(20), 2722. https://doi.org/10.3390/polym17202722