Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment
2.3. Electrochemical Synthesis
2.4. Electrochemical Characterization
2.5. Electrochemical pH Response
2.6. Interactions with Biomolecules
3. Results and Discussion
3.1. Electrochemical Synthesis
3.2. FESEM Morphological Characterization
3.3. FTIR and RAMAN Spectroscopic Characterization
3.4. Surface Wettability Characterization
3.5. Electrochemical Characterization of 5PIBA Film
3.6. Influence of pH on Electrochemical Behavior
3.7. Evaluation of 5PIBA Interactions with Biomolecules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5PIBA | Poly-5-Indolylboronic Acid |
ACN | Acetonitrile |
APBA | p-Aminophenylboronic Acid |
ATR | Attenuated Total Reflectance |
BB | Borate Buffer |
BFEE | Boron Trifluoride Diethyl Etherate |
CPE | Constant Phase Element |
CV | Cyclic Voltammetry |
ΔE | Peak Potential Separation |
Ea | Anodic Peak Potential |
Ec | Cathodic Peak Potential |
EIS | Electrochemical Impedance Spectroscopy |
FESEM | Field Emission Scanning Electron Microscopy |
GCE | Glassy Carbon Electrode |
HOPG | Highly Oriented Pyrolytic Graphite |
LOD | Limit of Detection |
MES | 2-Morpholinoethanesulfonic Acid |
MIP | Molecularly Imprinted Polymer |
OCP | Open Circuit Potential |
pKa | Acid Dissociation Constant |
Rct | Charge Transfer Resistance |
Rs | Solution Resistance |
SPCE | Screen-Printed Carbon Electrode |
SS | Stainless Steel |
χ2 | Chi-square |
References
- Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, J.; Guo, X.; Li, Y.; Li, L.; Pan, L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers 2024, 16, 1597. [Google Scholar] [CrossRef] [PubMed]
- Gvozdenovic, M.; Jugovic, B.; Stevanovic, J.; Grgur, B. Electrochemical Synthesis of Electroconducting Polymers. Hem. Ind. 2014, 68, 673–684. [Google Scholar] [CrossRef]
- Liu, C.; Liu, P.; Ding, W.; Zhu, S.; Li, X.; Xu, J. Electropolymerization of Indole and Its 5-Position-Substituted Derivatives in the Mixed Electrolytes of Acetic Acid and Boron Trifluoride Diethyl Etherate. Int. J. Electrochem. Sci. 2019, 14, 5132–5142. [Google Scholar] [CrossRef]
- Pandey, P.C.; Kumar, T.A.; Narayan, R.J. Optimization of solvents, electrolytes, and mediators for polyindole-based electrochemical sensors. Sens. Diagn. 2024, 3, 1392. [Google Scholar] [CrossRef]
- Humayun, H.; Begum, B.; Bilal, S.; Shah, A.H.A.; Röse, P. Polyindole Embedded Nickel/Zinc Oxide Nanocomposites for High-Performance Energy Storage Applications. Nanomaterials 2023, 13, 618. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, D.; Ma, X.; Xu, J.; Zhou, W.; Zhao, F. High-Performance Capacitive Behavior of Layered Reduced Graphene Oxide and Polyindole Nanocomposite Materials. RSC Adv. 2016, 6, 29840–29847. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Mo, D.; Wang, Z.; Xu, J. Capacitance Comparison of Poly(Indole-5-Carboxylic Acid) in Different Electrolytes and Its Symmetrical Supercapacitor in HClO4 Aqueous Electrolyte. Synth. Met. 2015, 203, 98–106. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Huang, D.L.; Ma, X.M.; Xu, J.K.; Jiang, F.X.; Lu, B.Y.; Zhu, D.H. Porous Poly(5-Cyanoindole) Electrode with High Capacitance. Adv. Mat. Res. 2014, 1053, 235–239. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Protective Polymeric Films for Industrial Substrates: A Critical Review on Past and Recent Applications with Conducting Polymers and Polymer Composites/Nanocomposites. Prog. Mater. Sci. 2019, 104, 380–450. [Google Scholar] [CrossRef]
- Castañeda, E.; Castillo, J.; Pascual, M.; Rubio, F.; Vargas, I.; De la Iglesia, R.; Armijo, F. Marine Biocorrosion Inhibition of Pseudomonas Sp. Biofilms on 304 Stainless Steel Coated with Poly-6-Aminoindole Produced by Two Different Electrochemical Methods. Prog. Org. Coat. 2024, 194, 108605. [Google Scholar] [CrossRef]
- Martinez-Sade, E.; Martinez-Rojas, F.; Ramos, D.; Aguirre, M.J.; Armijo, F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers 2023, 15, 1168. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rojas, F.; Diculescu, V.C.; Armijo, F. Electrochemical Immunosensing Platform for the Determination of the 20S Proteasome Using an Aminophenylboronic/Poly-Indole-6-Carboxylic Acid-Modified Electrode. ACS Appl. Bio. Mater. 2020, 3, 4941–4948. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rojas, F.; Castañeda, E.; Armijo, F. Conducting Polymer Applied in a Label-Free Electrochemical Immunosensor for the Detection Prostate-Specific Antigen Using Its Redox Response as an Analytical Signal. J. Electroanal. Chem. 2021, 880, 114877. [Google Scholar] [CrossRef]
- António, J.P.M.; Russo, R.; Carvalho, C.P.; Cal, P.M.S.D.; Gois, P.M.P. Boronic Acids as Building Blocks for the Construction of Therapeutically Useful Bioconjugates. Chem. Soc. Rev. 2019, 48, 3513–3536. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, X.; Liu, M.; Wang, C.; Chu, F. A Poly(5-Indolylboronic Acid) Based Molecular Imprint Doped with Carbon Dots for Fluorometric Determination of Glucose. Microchim. Acta 2017, 184, 4175–4181. [Google Scholar] [CrossRef]
- Jenko, M.; Gorenšek, M.; Godec, M.; Hodnik, M.; Batič, B.Š.; Donik, Č.; Grant, J.T.; Dolinar, D. Surface Chemistry and Microstructure of Metallic Biomaterials for Hip and Knee Endoprostheses. Appl. Surf. Sci. 2018, 427, 584–593. [Google Scholar] [CrossRef]
- Wusiman, M.; Taghipour, F. Molecularly Imprinted Fluorescence Sensor Chip for Lactate Measurement. Microsyst. Nanoeng. 2024, 10, 175. [Google Scholar] [CrossRef]
- Zhou, W.; Huan, K.; Chao, S.; Xu, J. Electrochemical Synthesis and Characterization of Self-Supporting Flexible Poly(5-Indolylboronic Acid) Film. Acta Polym. Sin. 2022, 53, 273–278. [Google Scholar] [CrossRef]
- Xu, J.; Hou, J.; Zhou, W.; Nie, G.; Pu, S.; Zhang, S. 1H NMR Spectral Studies on the Polymerization Mechanism of Indole and Its Derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 723–728. [Google Scholar] [CrossRef]
- Nie, G.; Cai, T.; Zhang, S.; Bao, Q.; Xu, J. Electrodeposition of Poly(Indole-5-Carboxylic Acid) in Boron Trifluoride Diethyl Etherate Containing Additional Diethyl Ether. Electrochim. Acta 2007, 52, 7097–7106. [Google Scholar] [CrossRef]
- Arjomandi, J.; Nematollahi, D.; Amani, A. Enhanced Electrical Conductivity of Polyindole Prepared by Electrochemical Polymerization of Indole in Ionic Liquids. J. Appl. Polym. Sci. 2014, 131, 40094. [Google Scholar] [CrossRef]
- Berkes, B.B.; Bandarenka, A.S.; Inzelt, G. Electropolymerization: Further Insight into the Formation of Conducting Polyindole Thin Films. J. Phys. Chem. C 2015, 119, 1996–2003. [Google Scholar] [CrossRef]
- Holze, R. Overoxidation of Intrinsically Conducting Polymers. Polymers 2022, 14, 1584. [Google Scholar] [CrossRef] [PubMed]
- Düdükcü, M.; Köleli, F. Electrochemical Synthesis of Polyindole on 304-Stainless Steel in LiClO4–Acetonitrile Solution and Its Corrosion Performance. Prog. Org. Coat. 2006, 55, 324–329. [Google Scholar] [CrossRef]
- Hasan, M.d.B.; Parvez, M.d.M.; Abir, A.Y.; Ahmad, M.d.F. A Review on Conducting Organic Polymers: Concepts, Applications, and Potential Environmental Benefits. Heliyon 2025, 11, e42375. [Google Scholar] [CrossRef]
- Eun, J.; Kim, D.; Kim, F.S. Electrochemical Doping and Dedoping Behaviors of PEDOT-Based Ternary Conducting Polymer Composites with Binary Polymer Surfactants. ACS Appl. Polym. Mater. 2023, 5, 5495–5502. [Google Scholar] [CrossRef]
- Heard, D.M.; Lennox, A.J.J. Electrode Materials in Modern Organic Electrochemistry. Angew. Chem. Int. Ed. 2020, 59, 18866–18884. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Ferro, S. Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes. Chem. Soc. Rev. 2006, 35, 1324–1340. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, H.; Zhang, J.; Lu, Y.; Lu, H.; Meng, X. Electro Polymerization of Polypyrrole Coatings Doped with Different Proton Acids for Corrosion Protection of 304 Stainless Steel. MATEC Web Conf. 2017, 109, 03007. [Google Scholar] [CrossRef]
- Jin, B.; Gao, F.; Zhu, Y.-F.; Lang, X.-Y.; Han, G.-F.; Gao, W.; Wen, Z.; Zhao, M.; Li, J.-C.; Jiang, Q. Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-Ion Batteries. Sci. Rep. 2016, 6, 19317. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Y. Enhanced Electrochemical Performance of Polypyrrole Depending on Morphology and Structure Optimization by Reduced Graphene Oxide as Support Frameworks. Electrochim. Acta 2018, 265, 47–55. [Google Scholar] [CrossRef]
- Golba, S.; Kubisztal, J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules 2024, 29, 5436. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, A.; Qiao, M.; Ren, T.; Huang, T.-S.; Zhang, X.; Cook, J.; Bozack, M.J.; Farag, R. High-Performance Engineered Conducting Polymer Film towards Antimicrobial/Anticorrosion Applications. Eng. Sci. 2018, 4, 70–78. [Google Scholar] [CrossRef]
- Arteaga, G.C.; del Valle, M.A.; Antilén, M.; Romero, M.; Ramos, A.; Hernández, L.; Arévalo, M.C.; Pastor, E.; Louarn, G. Nucleation and Growth Mechanism of Electro-Synthesized Poly(Pyrrole) on Steel. Int. J. Electrochem. Sci. 2013, 8, 4120–4130. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Mo, D.; Hou, J.; Xu, J. Effect of Substituent Position on Electrodeposition, Morphology, and Capacitance Performance of Polyindole Bearing a Carboxylic Group. Electrochim. Acta 2015, 176, 1302–1312. [Google Scholar] [CrossRef]
- Vhatkar, S.S.; Abhisek, K.; Mathew, H.T.; Oraon, R. Hydrotrope-Driven Facile Synthesis of Nanosized Polyindole and Their Electrochemical Study for Supercapacitor Application. Chem. Pap. 2023, 77, 6785–6796. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, W.; Hou, J.; Pu, S.; Yan, L.; Wang, J. Electrosyntheses of High-quality Poly(5-nitroindole) Films in Boron Trifluoride Diethyl Etherate Containing Additional Diethyl Ether. J. Polym. Sci. A Polym. Chem. 2005, 43, 3986–3997. [Google Scholar] [CrossRef]
- Plachý, T.; Žitka, J.; Mrlík, M.; Bažant, P.; Kadlečková, M.; Trchová, M.; Stejskal, J. Electrorheology of Polyindole. Polymer 2021, 217, 123448. [Google Scholar] [CrossRef]
- Saini, R.; Singh, P.; Kumar, R.; Kulriya, P.; Kumar, S. Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composites for High-Performance Supercapacitor Applications. J. Electron. Mater. 2024, 53, 5971–5980. [Google Scholar] [CrossRef]
- Thadathil, A.; Ismail, Y.A.; Periyat, P. Ternary 3D Reduced Graphene Oxide/Ni0.5 Zn0.5 Fe2 O4/Polyindole Nanocomposite for Supercapacitor Electrode Application. RSC Adv. 2021, 11, 35828–35841. [Google Scholar] [CrossRef] [PubMed]
- Razmutė, I.; Kuodis, Z.; Eicher-Lorka, O.; Niaura, G. Surface-Enhanced Raman Spectroscopy of Indole Ring-Terminated Self-Assembled Monolayer on Silver Electrode. CHEMIJA 2006, 17, 25–30. [Google Scholar]
- Talbi, H.; Humbert, B.; Billaud, D. FTIR and Raman Spectroscopic Investigations on the Redox Behaviour of Poly(5-Cyanoindole) in Acidic Aqueous Solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1998, 54, 1879–1893. [Google Scholar] [CrossRef]
- Prosanov, I.Y.; Abdulrahman, S.T.; Thomas, S.; Bulina, N.V.; Gerasimov, K.B. Complex of Polyvinyl Alcohol with Boric Acid: Structure and Use. Mater. Today Commun. 2018, 14, 77–81. [Google Scholar] [CrossRef]
- Sena, J.; Johannissen, L.O.; Blaker, J.J.; Hay, S. A Machine Learning Model for the Prediction of Water Contact Angles on Solid Polymers. J. Phys. Chem. B 2025, 129, 2739–2745. [Google Scholar] [CrossRef]
- Saraji, M.; Bagheri, A. Electropolymerization of Indole and Study of Electrochemical Behavior of the Polymer in Aqueous Solutions. Synth. Met. 1998, 98, 57–63. [Google Scholar] [CrossRef]
- Kierzek, K.; Gryglewicz, G. Activated Carbons and Their Evaluation in Electric Double Layer Capacitors. Molecules 2020, 25, 4255. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Li, R.; Feng, G.; Wu, Z.; Compagnini, G.; Gulino, A.; Feng, Z.; Hu, A. High-Performance Stacked in-Plane Supercapacitors and Supercapacitor Array Fabricated by Femtosecond Laser 3D Direct Writing on Polyimide Sheets. Electrochim. Acta 2017, 241, 153–161. [Google Scholar] [CrossRef]
- Çatoğlu, F.; Altınışık, S.; Koyuncu, S. Comparative Study of Electrochromic Supercapacitor Electrodes Based on PEDOT:PSS/ITO Fabricated via Spray and Electrospray Methods. ACS Omega 2024, 9, 32107–32115. [Google Scholar] [CrossRef]
- Ren, G.; Li, S.; Fan, Z.-X.; Hoque, M.N.F.; Fan, Z. Ultrahigh-Rate Supercapacitors with Large Capacitance Based on Edge Oriented Graphene Coated Carbonized Cellulous Paper as Flexible Freestanding Electrodes. J. Power Sources 2016, 325, 152–160. [Google Scholar] [CrossRef]
- Chiriac, A.-P.; Constantin, C.-P.; Damaceanu, M.-D. ProDOT-Based Polymers: From Energy Storage to Smart Window Applications. Energies 2023, 16, 3999. [Google Scholar] [CrossRef]
- Chang, Y.; Huang, Q.; Yang, L.; Ouyang, M.; Dong, Y.; Li, W.; Zhang, C. Novel Twisted-Structure Polymer Electrode Material with Intrinsic Pores for High-Performance Electrochromic Supercapacitor. Mater. Chem. Front. 2025, 9, 2178–2189. [Google Scholar] [CrossRef]
- Bhattacharya, P. Conducting-Polymer-Based Supercapacitors. In Handbook of Nanocomposite Supercapacitor Materials III; Kar, K.K., Ed.; Springer Series in Materials Science, 313; Springer: Cham, Switzerland, 2021; pp. 119–158. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods, and Applications; Oxford University Press: Oxford, UK, 2005; ISBN 9780198553885. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; ISBN 9780471043720. [Google Scholar]
- Compton, R.G.; Banks, C.E. Understanding Voltammetry, 3rd ed.; World Scientific: Singapore, 2018; ISBN 978-1-78634-526-4. [Google Scholar] [CrossRef]
- Berkes, B.B.; Nemes, Á.; Moore, C.E.; Szabó, F.; Inzelt, G. Electrochemical Nanogravimetric Study of the Electropolymerization of 6-Aminoindole and the Redox Transformations of the Polymer Formed in Aqueous Media. J. Solid State Electrochem. 2013, 17, 3067–3074. [Google Scholar] [CrossRef]
- Broda, B.; Inzelt, G. Preparation and Characterization of Poly(5-aminoindole) by Using Electrochemical Quartz Crystal Nanobalance Technique. Acta Chim. Slov. 2014, 61, 357–365. [Google Scholar] [PubMed]
- Billaud, D.; Humbert, B.; Thevenot, L.; Thomas, P.; Talbi, H. Electrochemical Properties and Fourier Transform-Infrared Spectroscopic Investigations of the Redox Behaviour of Poly(Indole-5-Carboxylic Acid) in LiClO4-Acetonitrile Solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Brooks, W.L.A.; Deng, C.C.; Sumerlin, B.S. Structure–Reactivity Relationships in Boronic Acid–Diol Complexation. ACS Omega 2018, 3, 17863–17870. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Kong, L.; Gao, J. Boron Enabled Bioconjugation Chemistries. Chem. Soc. Rev. 2024, 53, 11888–11907. [Google Scholar] [CrossRef]
- de Leeuw, D.M.; Simenon, M.M.J.; Brown, A.R.; Einerhand, R.E.F. Stability of N-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. Synth. Met. 1997, 87, 53–59. [Google Scholar] [CrossRef]
- Pradeep, H.; Bindu, M.; Suresh, S.; Thadathil, A.; Periyat, P. Recent Trends and Advances in Polyindole-Based Nanocomposites as Potential Antimicrobial Agents: A Mini Review. RSC Adv. 2022, 12, 8211–8227. [Google Scholar] [CrossRef]
- Liu, J.; Yang, K.; Shao, W.; Qu, Y.; Li, S.; Wu, Q.; Zhang, L.; Zhang, Y. Boronic Acid-Functionalized Particles with Flexible Three-Dimensional Polymer Branch for Highly Specific Recognition of Glycoproteins. ACS Appl. Mater. Interfaces 2016, 8, 9552–9556. [Google Scholar] [CrossRef]
- Han, H.; Davis, M.E. Targeted Nanoparticles Assembled via Complexation of Boronic-Acid-Containing Targeting Moieties to Diol-Containing Polymers. Bioconjug Chem. 2013, 24, 669–677. [Google Scholar] [CrossRef]
Surface | Left Angle | Left RMS Error | Right Angle | Right RMS Error | Average Angle |
---|---|---|---|---|---|
HOPG | 80.10° | 0.40 | 78.12° | 0.41 | 79.11° |
5PIBA * | 36.52° | 0.47 | 41.50° | 0.56 | 38.17° |
Material | Capacitance (mF∙cm−2) | Synthesis | Measurement Solution | Ref. |
---|---|---|---|---|
PEDOT:PSS/ITO | 0.83–1.68 | Electro/spray coating | ACN/LiClO4 | [49] |
EOG/CCP | 0.53–1.5 | PECVD 1 | KOH aqueous | [50] |
ProDOT | 0.538–1.059 | chemical | ACN/LiClO4 | [51] |
p3DMAC-EDOT | 4.76 | electrochemical | — | [52] |
PPy/Cu-MOF | 252.1 | chemical | KCl aquerous | [53] |
PPy/Agar/Polyacrylamide | 79.7 | chemical | H2SO4 | [53] |
PEDOT:PSS | 0.23–1.18 | chemical | ACN/LiClO4 | [53] |
5PIBA 2 | 0.23 | electrochemical | MES buffer | — |
Equivalent Circuit Parameters | SPCE | SPCE/5PIBA | SPCE (10mM FF) * | SPCE/5PIBA (10mM FF) * |
---|---|---|---|---|
Rs (Ω) | 3397 | 2480 | 150.8 | 350.6 |
CPE1–T (F) | 1.05 × 10−6 | 1.64 × 10−4 | 1.21 × 10−6 | 1.39 × 10−3 |
CPE1–P | 0.94 | 0.91 | 0.97 | 0.76 |
R1 (Ω) | 6.12 × 107 | 1.58 × 106 | 383.1 | 2.88 × 10−5 |
W–R (Ω) | — | — | 5504 | 688,4 |
W–T (s) | — | — | 201.6 | 2.14 |
W–P | — | — | 0.454 | 0.231 |
χ2 | 0.0234 | 0.0924 | 0.00088 | 0.00076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, D.; Aguirre, M.J.; Armijo, F. Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications. Polymers 2025, 17, 2702. https://doi.org/10.3390/polym17192702
Ramos D, Aguirre MJ, Armijo F. Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications. Polymers. 2025; 17(19):2702. https://doi.org/10.3390/polym17192702
Chicago/Turabian StyleRamos, Danilo, María Jesús Aguirre, and Francisco Armijo. 2025. "Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications" Polymers 17, no. 19: 2702. https://doi.org/10.3390/polym17192702
APA StyleRamos, D., Aguirre, M. J., & Armijo, F. (2025). Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications. Polymers, 17(19), 2702. https://doi.org/10.3390/polym17192702