Microstructural and Impact Resistance Optimization of Concrete Composites with Waste-Based Aggregate Substitutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Used in Concrete Mixes
2.1.1. Cement
2.1.2. Fine Aggregate
2.1.3. Superplasticizer
2.1.4. Copper Slag
2.1.5. Glass Granulate
2.1.6. SBR Rubber
2.1.7. Polypropylene
2.1.8. Concrete Mixtures
2.2. Methodology of Investigation
2.2.1. Scanning Electron Microscopy of Aggregates
2.2.2. Stereoscopic Microscopy of the Concrete Structure
2.2.3. Static Compression Test
2.2.4. Impact Testing
3. Results
3.1. SEM Analysis Results
3.2. Results of Stereoscopic Microscopy
3.3. Compressive-Strength Results
3.4. High Impact Test Results
3.5. Life Cycle Assessment
4. Discussion
5. Conclusions
- Surface modification of mineral and polymer additives to improve adhesion to the cement matrix;
- Optimization of mixing and compaction to achieve a more homogeneous structure (particularly for CSC);
- Incorporation of dispersed reinforcement to enhance ductility and resistance to crack propagation;
- Tests on specimens conditioned in climate chambers, as well as on samples subjected to long-term storage under atmospheric conditions;
- Extension of dynamic tests to include residual velocity measurements and numerical modelling for a broader analysis of high-speed phenomena.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hamad, M.A.; Nasr, M.; Shubbar, A.; Al-Khafaji, Z.; Al Masoodi, Z.; Al-Hashimi, O.; Kot, P.; Alkhaddar, R.; Hashim, K. Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review. Energies 2021, 14, 8291. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Tang, L.; Zeng, W. Analysis of Two Processing Techniques Applied on Powders from Recycling of Clay Bricks and Concrete, in Terms of Efficiency, Energy Consumption, and Cost. Constr. Build. Mater. 2023, 385, 131517. [Google Scholar] [CrossRef]
- Busch, P.; Kendall, A.; Murphy, C.W.; Miller, S.A. Literature Review on Policies to Mitigate GHG Emissions for Cement and Concrete. Resour. Conserv. Recycl. 2022, 182, 106278. [Google Scholar] [CrossRef]
- Das, S.; Saha, P.; Prajna Jena, S.; Panda, P. Geopolymer Concrete: Sustainable Green Concrete for Reduced Greenhouse Gas Emission—A Review. Mater. Today Proc. 2022, 60, 62–71. [Google Scholar] [CrossRef]
- Sabău, M.; Bompa, D.V.; Silva, L.F.O. Comparative Carbon Emission Assessments of Recycled and Natural Aggregate Concrete: Environmental Influence of Cement Content. Geosci. Front. 2021, 12, 101235. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, C.; Liu, Z.; Ling, L.; Lei, J.; Fang, G.; Luo, X. Recycling of Waste Printed Circuit Boards: Effect of PCB on Aging Resistance Property of SBR Modified Asphalt. J. Build. Eng. 2023, 72, 106617. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Tolosa, G.R.; de Almeida Santos, G.T.; de Oliveira, J.P.J.; Budemberg, E.R.; da Silva, M.J.; Cabrera, F.C.; Job, A.E.; Paim, L.L.; Torres, G.B.; et al. Recycling Waste Polyurethane from the Refrigeration Industry as Filler in SBR/NR Composites for Industrial Applications. J. Appl. Polym. Sci. 2023, 140, e53709. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive Review on Metallurgical Recycling and Cleaning of Copper Slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon Emission of Global Construction Sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Shi, Q.; Peng, X.; Zheng, J. An International Comparison Analysis of CO2 Emissions in the Construction Industry. Sustain. Dev. 2021, 29, 754–767. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B.; Adak, D. A Comprehensive Review on Integrating Sustainable Practices and Circular Economy Principles in Concrete Industry. J. Environ. Manag. 2024, 370, 122702. [Google Scholar] [CrossRef]
- Oyejobi, D.O.; Firoozi, A.A.; Fernández, D.B.; Avudaiappan, S. Integrating Circular Economy Principles into Concrete Technology: Enhancing Sustainability through Industrial Waste Utilization. Results Eng. 2024, 24, 102846. [Google Scholar] [CrossRef]
- Shao, Z.; Sakai, Y. Recycling Recycled Concrete Powder into Low-Carbon Construction Material through Compaction and Carbonation. Resour. Conserv. Recycl. 2025, 222, 108456. [Google Scholar] [CrossRef]
- Rosik-Dulewska, C. Podstawy Gospodarki Odpadami, 6th ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015. [Google Scholar]
- Xu, K.; Huang, W.; Zhang, L.; Fu, S.; Chen, M.; Ding, S.; Han, B. Mechanical Properties of Low-Carbon Ultrahigh-Performance Concrete with Ceramic Tile Waste Powder. Constr. Build. Mater. 2021, 287, 123036. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, H.; Xu, K.; Huang, W.; Wang, Y.; Chen, M.; Han, B. Effect of Ceramic Waste Tile as a Fine Aggregate on the Mechanical Properties of Low-Carbon Ultrahigh Performance Concrete. Constr. Build. Mater. 2023, 370, 130595. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, Z.; Zhou, Z.; Wang, C. Structural Engineering Applications of Recycled Aggregate Concrete: Seismic Performance, Guidelines, Projects and Demonstrations. Case Stud. Constr. Mater. 2022, 17, e01520. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards Sustainable Concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Al-Tarbi, S.M.; Baghabra Al-Amoudi, O.S.; Al-Osta, M.A.; Al-Awsh, W.A.; Ali, M.R.; Maslehuddin, M. Development of Eco-Friendly Hollow Concrete Blocks in the Field Using Wasted High-Density Polyethylene, Low-Density Polyethylene, and Crumb Tire Rubber. J. Mater. Res. Technol. 2022, 21, 1915–1932. [Google Scholar] [CrossRef]
- Sangeetha, P.; Annamalai, V.E.; Kaythry, P. Durability Studies on Concrete with Partial Replacement of Cement and Coarse Aggregate by Seashell Waste. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Thorne, J.; Bompa, D.V.; Funari, M.F.; Garcia-Troncoso, N. Environmental Impact Evaluation of Low-Carbon Concrete Incorporating Fly Ash and Limestone. Clean. Mater. 2024, 12, 100242. [Google Scholar] [CrossRef]
- Cui, K.; Liang, K.; Jiang, T.; Zhang, J.; Lau, D.; Chang, J. Understanding the Role of Carbon Nanotubes in Low-Carbon Concrete: From Experiment to Molecular Dynamics. Cem. Concr. Compos. 2023, 142, 105189. [Google Scholar] [CrossRef]
- Althoey, F.; Ansari, W.S.; Sufian, M.; Deifalla, A.F. Advancements in Low-Carbon Concrete as a Construction Material for the Sustainable Built Environment. Dev. Built Environ. 2023, 16, 100284. [Google Scholar] [CrossRef]
- Das, N.; Nanthagopalan, P. State-of-the-Art Review on Ultra High Performance Concrete—Ballistic and Blast Perspective. Cem. Concr. Compos. 2022, 127, 104383. [Google Scholar] [CrossRef]
- Rajput, A.; Iqbal, M.A.; Gupta, N.K. Ballistic Performances of Concrete Targets Subjected to Long Projectile Impact. Thin-Walled Struct. 2018, 126, 171–181. [Google Scholar] [CrossRef]
- Remennikov, A.; Gan, E.C.J.; Ngo, T.; Netherton, M.D. The Development and Ballistic Performance of Protective Steel-Concrete Composite Barriers against Hypervelocity Impacts by Explosively Formed Projectiles. Compos. Struct. 2019, 207, 625–644. [Google Scholar] [CrossRef]
- Das, N.; Nanthagopalan, P. Ballistic Impact Resistance of Ultra-High-Performance Concrete (UHPC): A Comprehensive Experimental Investigation and Parametric Analysis. Int. J. Impact Eng. 2024, 187, 104912. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Wang, X.; Zhang, Y.; Ma, Z. Dynamic Mechanical Properties and Damage Constitutive Model of High-Toughness Recycled Aggregate Concrete under High Strain Rate Impact Loads. J. Build. Eng. 2025, 106, 112589. [Google Scholar] [CrossRef]
- Afshani, Z.; Rofooei, F.R. Experimental Study of Lightweight and Normal-Weight Concrete Slabs under Impact Loads: The Influence of Prestressing and Fiber Reinforcement. Constr. Build. Mater. 2025, 472, 140863. [Google Scholar] [CrossRef]
- Smaoui, H.; Trabelsi, A.; Kammoun, Z.; Aouicha, B. Mechanical, Physical, Blast Waves and Ballistic Impact Resistance Properties of a Concrete Incorporating Thermally Treated PET Inclusions. Constr. Build. Mater. 2023, 365, 130088. [Google Scholar] [CrossRef]
- Stanag 2280; Test Procedures and Classification of the Effects of Weapons on Structures. North Atlantic Treaty Organization: Brussels, Belgium, 2016; Volume 15.
- Korentz, J.; Szmatuła, F. Wpływ Dodatku Miału Gumowego SBR Na Właściwości Zapraw Cementowych. Mater. Bud. 2020, 12, 14–17. [Google Scholar] [CrossRef]
- Tang, B.; Wu, H.; Wu, Y.F. Evaluation of Carbon Footprint of Compression Cast Waste Rubber Concrete Based on LCA Approach. J. Build. Eng. 2024, 86, 108818. [Google Scholar] [CrossRef]
- Miah, M.J.; Huaping, R.; Paul, S.C.; Babafemi, A.J.; Sharma, R.; Jang, J.G. Performance of Eco-Friendly Concrete Made from Recycled Waste Tire Fine Aggregate as a Replacement for River Sand. Structures 2023, 58, 105463. [Google Scholar] [CrossRef]
- Subhani, M.; Ali, S.; Allan, R.; Grace, A.; Rahman, M. Physical and Mechanical Properties of Self-Compacting Geopolymer Concrete with Waste Glass as Partial Replacement of Fine Aggregate. Constr. Build. Mater. 2024, 437, 136956. [Google Scholar] [CrossRef]
- Dynan, D.; Shaikh, F.; Derry, S.; Biswas, W.K. Eco-Efficiency Assessment Utilizing Recycled Glass Aggregate in Concrete. Buildings 2023, 13, 910. [Google Scholar] [CrossRef]
- Kurniati, E.O.; Pederson, F.; Kim, H.J. Application of Steel Slags, Ferronickel Slags, and Copper Mining Waste as Construction Materials: A Review. Resour. Conserv. Recycl. 2023, 198, 107175. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Hisada, M.; Al-Saidy, A.H.; Al-Oraimi, S.K. Performance of High Strength Concrete Made with Copper Slag as a Fine Aggregate. Constr. Build. Mater. 2009, 23, 2132–2140. [Google Scholar] [CrossRef]
- PN-EN 12390-3: 2011/AC: 2012; Concrete Testing—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2013.
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life Cycle Assessment (LCA) Applied to the Manufacturing of Common and Ecological Concrete: A Review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Wang, J.; Wang, Y.; Xu, Y.; Xiao, J. A Review of Life Cycle Assessment of Recycled Aggregate Concrete. Constr. Build. Mater. 2019, 209, 115–125. [Google Scholar] [CrossRef]
- Andersson, R.; Fridh, K.; Stripple, H.; Häglund, M. Calculating CO2 Uptake for Existing Concrete Structures during and after Service Life. Environ. Sci. Technol. 2013, 47, 11625–11633. [Google Scholar] [CrossRef]
- Hottle, T.; Hawkins, T.R.; Chiquelin, C.; Lange, B.; Young, B.; Sun, P.; Elgowainy, A.; Wang, M. Environmental Life-Cycle Assessment of Concrete Produced in the United States. J. Clean. Prod. 2022, 363, 131834. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Katebi, A.; Taherian, P.; Panahandeh, A. Environmental Life Cycle Assessment of Concrete with Different Mixed Designs. Int. J. Constr. Manag. 2021, 21, 665–676. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, W.; Ma, G. Mechanical Properties of Copper Slag Reinforced Concrete under Dynamic Compression. Constr. Build. Mater. 2010, 24, 910–917. [Google Scholar] [CrossRef]
- Gupta, N.; Siddique, R. Durability Characteristics of Self-Compacting Concrete Made with Copper Slag. Constr. Build. Mater. 2020, 247, 118580. [Google Scholar] [CrossRef]
- Wang, R.; Shi, Q.; Li, Y.; Cao, Z.; Si, Z. A Critical Review on the Use of Copper Slag (CS) as a Substitute Constituent in Concrete. Constr. Build. Mater. 2021, 292, 123371. [Google Scholar] [CrossRef]
- Du, H.; Hwee Tan, K. Waste Glass Powder as Cement Replacement in Concrete. J. Adv. Concr. Technol. 2014, 12, 468–477. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Pugazhmani, G.; Sripragadeesh, R.; Muthu, D.; Venkatasubramanian, C. Experimental Study on the Mechanical and Durability Properties of Concrete with Waste Glass Powder and Ground Granulated Blast Furnace Slag as Supplementary Cementitious Materials. Constr. Build. Mater. 2017, 156, 739–749. [Google Scholar] [CrossRef]
- Heriyanto; Pahlevani, F.; Sahajwalla, V. Effect of Glass Aggregates and Coupling Agent on the Mechanical Behaviour of Polymeric Glass Composite. J. Clean. Prod. 2019, 227, 119–129. [Google Scholar] [CrossRef]
- Małek, M.; Łasica, W.; Kadela, M.; Kluczyński, J.; Dudek, D. Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement–Glass Composite. Materials 2021, 14, 637. [Google Scholar] [CrossRef]
- Grinys, A.; Augonis, A.; Daukšys, M.; Pupeikis, D. Mechanical Properties and Durability of Rubberized and SBR Latex Modified Rubberized Concrete. Constr. Build. Mater. 2020, 248, 118584. [Google Scholar] [CrossRef]
- Prakash, P.C.; Gurumoorthi, G.; Navaneethakrishnan, V.; Vishvanathperumal, S. Effect of Nanographene Oxide on the Mechanical Properties of EPDM/SBR Nano-Composites. Polym. Soc. Korea 2023, 47, 427–439. [Google Scholar] [CrossRef]
- Effect of SBR on Physical and Mechanical Properties of Concrete. Available online: https://www.researchgate.net/publication/334442892_Effect_of_SBR_on_Physical_and_Mechanical_Properties_of_Concrete (accessed on 10 July 2025).
- Qasim, O.A. Experimental Investigation on Effect of SBR and Steel Fiber on Properties of Different Concrete Types. Int. J. Civ. Eng. Technol. 2018, 9, 361–378. [Google Scholar]
- Baranowski, P.; Mazurkiewicz, Ł.; Małachowski, J.; Pytlik, M. Experimental Testing and Numerical Simulations of Blast-Induced Fracture of Dolomite Rock. Meccanica 2020, 55, 2337–2352. [Google Scholar] [CrossRef]
- Baranowski, P.; Kucewicz, M.; Gieleta, R.; Stankiewicz, M.; Konarzewski, M.; Bogusz, P.; Pytlik, M.; Małachowski, J. Fracture and Fragmentation of Dolomite Rock Using the JH-2 Constitutive Model: Parameter Determination, Experiments and Simulations. Int. J. Impact Eng. 2020, 140, 103543. [Google Scholar] [CrossRef]
Aggregate | Specific Density (g/cm3) | Bulk Density (g/cm3) | Grain Diameter (mm) |
---|---|---|---|
Sand | 2.62 | 1.70 | 0.05–2.00 |
Copper slag | 3.40 | 1.70 | 0.40–1.40 |
Fine glass | 2.50 | 1.40 | 0.90–1.50 |
SBR rubber | 0.88 | 1.50 | 2.00–3.00 |
Polypropylene | 0.92 | 1.27 | 1.00–1.40 |
Series | Cement [kg] | Fine Aggregate [kg] | Water [kg] | SP [%] | Fine Glass [kg] | Copper Slag [kg] | SBR Rubber [kg] | Polypropylene [kg] |
---|---|---|---|---|---|---|---|---|
Control mix | 0.96 | 5.415 | 0.525 | 8 | - | - | - | - |
FGC | 0.96 | 3.791 | 0.525 | 8 | 1.338 | - | - | - |
CSC | 0.96 | 3.791 | 0.525 | 8 | - | 1.625 | - | - |
RC | 0.96 | 3.791 | 0.525 | 8 | - | - | 1.433 | - |
PC | 0.96 | 3.791 | 0.525 | 8 | - | - | - | 1.214 |
Impactor Type | Mass [g] | Impactor Initial Velocity [m/s] | Kinetic Energy [J] |
---|---|---|---|
9 × 19 mm FMJ Parabellum | ~8.0 | ~350 | ~500 |
7.62 × 39 mm FMJ wz. 43 PS | ~7.9 | ~715 | ~2000 |
7.62 × 54R mm FMJ with soft lead core | ~9.6 | ~865 | ~3600 |
Specimen Type | Failure Mode | Energy Dissipation [%] |
---|---|---|
Copper slag | Cross-shaped fracture; specimen divided into four parts | Inconclusive |
SBR rubber | Material ejected in a Hertzian-cone spall pattern | 100% |
Glass granulate | Specimen split into two halves (bisection) | 99% |
Concrete Mix | Cement (PLN/t) | Natural Aggregate (PLN/t) | Substitute (PLN/t) | Water (PLN/t) | Total (PLN/t) |
---|---|---|---|---|---|
Ref | 84 | 297.8 | - | 5. 25 | 387.1 |
CSC | 84 | 208.5 | 32.5 | 5. 25 | 330.3 |
FGC | 84 | 208.5 | 294.4 | 5. 25 | 592.1 |
RC | 84 | 208.5 | 214.9 | 5. 25 | 512.7 |
PC | 84 | 208.5 | 206.4 | 5. 25 | 504.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępczak, M.; Kazimierczak, M.; Roszak, M.; Kurzawa, A.; Jamroziak, K. Microstructural and Impact Resistance Optimization of Concrete Composites with Waste-Based Aggregate Substitutions. Polymers 2025, 17, 2574. https://doi.org/10.3390/polym17192574
Stępczak M, Kazimierczak M, Roszak M, Kurzawa A, Jamroziak K. Microstructural and Impact Resistance Optimization of Concrete Composites with Waste-Based Aggregate Substitutions. Polymers. 2025; 17(19):2574. https://doi.org/10.3390/polym17192574
Chicago/Turabian StyleStępczak, Maksymilian, Mikołaj Kazimierczak, Maciej Roszak, Adam Kurzawa, and Krzysztof Jamroziak. 2025. "Microstructural and Impact Resistance Optimization of Concrete Composites with Waste-Based Aggregate Substitutions" Polymers 17, no. 19: 2574. https://doi.org/10.3390/polym17192574
APA StyleStępczak, M., Kazimierczak, M., Roszak, M., Kurzawa, A., & Jamroziak, K. (2025). Microstructural and Impact Resistance Optimization of Concrete Composites with Waste-Based Aggregate Substitutions. Polymers, 17(19), 2574. https://doi.org/10.3390/polym17192574