Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications
Abstract
1. Introduction
E-Textiles in Automotive Interiors: Enhancing Functionality and User Experience
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Morphology and Structure by FESEM Analysis
2.2.2. TGA Analysis
2.2.3. DSC Analysis
2.2.4. DC Electrical Measurements
2.3. Ageing Procedures
Thermal Ageing
2.4. Mechanical Stress
2.5. Prototype Preparation
3. Results
3.1. FE-SEM Analysis
3.2. TGA Analysis
3.3. DSC Analysis
3.4. Electrical Measurements Before and After Stress
3.5. Application: Multi-Touch Capacitive Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Ma, Q.; Yang, X.-F.; Wang, S.-D. Design and Fabrication of a Flexible Woven Smart Fabric Based Highly Sensitive Sensor for Conductive Liquid Leakage Detection. RSC Adv. 2017, 7, 41117–41126. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.; Khan, A.; Bermak, A. Developing Conductive Fabric Threads for Human Respiratory Rate Monitoring. IEEE Sens. J. 2021, 21, 4350–4356. [Google Scholar] [CrossRef]
- Tat, T.; Chen, G.; Zhao, X.; Zhou, Y.; Xu, J.; Chen, J. Smart Textiles for Healthcare and Sustainability. ACS Nano 2022, 16, 13301–13313. [Google Scholar] [CrossRef]
- Heim, F.; Durand, B.; Chakfe, N. Textile Heartvalve Prosthesis: Manufacturing Process and Prototype Performances. Text. Res. J. 2008, 78, 1124–1131. [Google Scholar] [CrossRef]
- Rauf, S.; Vijjapu, M.T.; Andrés, M.A.; Gascón, I.; Roubeau, O.; Eddaoudi, M.; Salama, K.N. Highly Selective Metal–Organic Framework Textile Humidity Sensor. ACS Appl. Mater. Interfaces 2020, 12, 29999–30006. [Google Scholar] [CrossRef]
- Sima, K.; Reboun, J.; Moravcova, D.; Svecova, L.; Kalas, D.; Soukup, R.; Hamacek, A. Washing Resistance of Textile Ribbon Dismountable Interconnections in Smart Textiles. In Proceedings of the 2021 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, Germany, 5–9 May 2021; pp. 1–5. [Google Scholar]
- Yang, K.; McErlain-Naylor, S.A.; Isaia, B.; Callaway, A.; Beeby, S. E-Textiles for Sports and Fitness Sensing: Current State, Challenges, and Future Opportunities. Sensors 2024, 24, 1058. [Google Scholar] [CrossRef]
- Hassabo, A.; Elmorsy, H.; Gamal, N.; Sediek, A.; Saad, F.; Hegazy, B.; Othman, H. Applications of Nanotechnology in the Creation of Smart Sportswear for Enhanced Sports Performance: Efficiency and Comfort. J. Text. Color. Pol. Sci. 2022, 20, 11–28. [Google Scholar] [CrossRef]
- Hansora, D.P.; Shimpi, N.G.; Mishra, S. Performance of Hybrid Nanostructured Conductive Cotton Materials as Wearable Devices: An Overview of Materials, Fabrication, Properties and Applications. RSC Adv. 2015, 5, 107716–107770. [Google Scholar] [CrossRef]
- Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R.P. Next-Generation Textiles: From Embedded Supercapacitors to Lithium Ion Batteries. J. Mater. Chem. A 2016, 4, 16771–16800. [Google Scholar] [CrossRef]
- Zopf, S.F.; Manser, M. Screen-Printed Military Textiles for Wearable Energy Storage. J. Eng. Fibers Fabr. 2016, 11, 155892501601100303. [Google Scholar] [CrossRef]
- Xue, C.-H.; Chen, J.; Yin, W.; Jia, S.-T.; Ma, J.-Z. Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles. Appl. Surf. Sci. 2012, 258, 2468–2472. [Google Scholar] [CrossRef]
- Wang, L.; He, D.; Qian, L.; He, B.; Li, J. Preparation of Conductive Cellulose Fabrics with Durable Antibacterial Properties and Their Application in Wearable Electrodes. Int. J. Biol. Macromol. 2021, 183, 651–659. [Google Scholar] [CrossRef]
- Shabani, A.; Hylli, M.; Kazani, I. Investigating Properties of Electrically Conductive Textiles: A Review. TEKS 2022, 65, 194–217. [Google Scholar] [CrossRef]
- Kalliohaka, T.; Paasi, J.; Lemaire, P. Forced Corona Method for the Evaluation of Fabrics with Conductive Fibres. J. Electrost. 2005, 63, 583–588. [Google Scholar] [CrossRef]
- Petru, M.; Ali, A.; Khan, A.S.; Srb, P.; Kucera, L.; Militky, J. Flexible Coated Conductive Textiles as Ohmic Heaters in Car Seats. Appl. Sci. 2023, 13, 6874. [Google Scholar] [CrossRef]
- Khorsandi, P.M.; Nousir, A.; Nabil, S. Functioning E-Textile Sensors for Car Infotainment Applications. In Proceedings of the 3rd International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles, Manchester, UK, 3–4 November 2022; p. 22. [Google Scholar]
- Rostas, K.; Navratil, J.; Soukup, R.; Moravcova, D. The Influence of Washing Cycles on the Conductive Threads Used in E-Textiles. In Proceedings of the 2022 45th International Spring Seminar on Electronics Technology (ISSE), Vienna, Austria, 11–15 May 2022; pp. 1–4. [Google Scholar]
- Wu, Z.; Zhao, Y.; Duo, Y.; Li, B.; Li, L.; Chen, B.; Yang, K.; Su, S.; Guan, J.; Wen, L.; et al. Silk Flocked Flexible Sensor Capable of Wide-Range and Sensitive Pressure Perception. ACS Appl. Mater. Interfaces 2024, 16, 64222–64232. [Google Scholar] [CrossRef]
- Bilisik, K.; Demiryurek, O.; Turhan, Y. Mechanical Characterization of Flocked Fabric for Automobile Seat Cover. Fibers Polym. 2011, 12, 111–120. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, X.; Xing, Z.; Tu, T. Fabrication of a Superhydrophobic Surface with Underwater Air-Retaining Properties by Electrostatic Flocking. RSC Adv. 2018, 8, 10719–10726. [Google Scholar] [CrossRef]
- Hu, S.; Yin, B.; Fang, X.; Qi, X.; Li, Y.; Tian, M. Self-Powered, Touchless, Interface-Friendly Cellulose Fabric-Based Sensor via Electrostatic Flocking Strategy. Int. J. Biol. Macromol. 2025, 305, 141199. [Google Scholar] [CrossRef]
- Vellayappan, M.V.; Jaganathan, S.K.; Supriyanto, E. Review: Unraveling the Less Explored Flocking Technology for Tissue Engineering Scaffolds. RSC Adv. 2015, 5, 73225–73240. [Google Scholar] [CrossRef]
- Kim, Y.K.; Chalivendra, V.B.; Lewis, A.F.; Fasel, B. Designing Flocked Energy-Absorbing Material Layers into Sport and Military Helmet Pads. Text. Res. J. 2022, 92, 2755–2770. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, X.; Zhu, Y.; Cui, M.; Kong, L.; Kuang, M.; Zhang, X.; Wang, R. A Carbon Nanotube-Based Textile Pressure Sensor with High-Temperature Resistance. RSC Adv. 2022, 12, 23091–23098. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Wang, K.; Yao, J.; Bian, H.; Song, K.; Komarneni, S.; Cai, Z. Three-Dimensional Stretchable Fabric-Based Electrode for Supercapacitors Prepared by Electrostatic Flocking. Chem. Eng. J. 2020, 390, 124442. [Google Scholar] [CrossRef]
- Hamdani, S.; Potluri, P.; Fernando, A. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn. Materials 2013, 6, 1072–1089. [Google Scholar] [CrossRef]
- Mo, L.; Guo, Z.; Wang, Z.; Yang, L.; Fang, Y.; Xin, Z.; Li, X.; Chen, Y.; Cao, M.; Zhang, Q.; et al. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics. Nanoscale Res. Lett. 2019, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Awais, M.; Mohsin, M. Recycling Textile Waste into Innovative Carbon Black and Applications to Smart Textiles: A Sustainable Approach. Biomass Conv. Bioref. 2024, 14, 23485–23500. [Google Scholar] [CrossRef]
- Khoso, N.A.; Jiao, X.; GuangYu, X.; Tian, S.; Wang, J. Enhanced Thermoelectric Performance of Graphene Based Nanocomposite Coated Self-Powered Wearable e-Textiles for Energy Harvesting from Human Body Heat. RSC Adv. 2021, 11, 16675–16687. [Google Scholar] [CrossRef] [PubMed]
- Pahalagedara, L.R.; Siriwardane, I.W.; Tissera, N.D.; Wijesena, R.N.; De Silva, K.M.N. Carbon Black Functionalized Stretchable Conductive Fabrics for Wearable Heating Applications. RSC Adv. 2017, 7, 19174–19180. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Mazzaracchio, V.; Scognamiglio, V.; Amine, A.; Moscone, D. Carbon Black as an Outstanding and Affordable Nanomaterial for Electrochemical (Bio)Sensor Design. Biosens. Bioelectron. 2020, 156, 112033. [Google Scholar] [CrossRef] [PubMed]
- Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive Polymers for Smart Textile Applications. J. Ind. Text. 2018, 48, 612–642. [Google Scholar] [CrossRef]
- Liu, S.; Qi, D.; Dong, H.; Meng, L.; Wang, Z.; Yin, X. Smart Textile Materials Empowering Automotive Intelligent Cockpits: An Innovative Integration from Functional Carriers to Intelligent Entities. J. Text. Inst. 2025, 1–25. [Google Scholar] [CrossRef]
- Decaens, J.; Vermeersch, O.; Lachapelle, D.; Forcier, P. Use Case of Smart Textiles Bio-Sensors Development and Integration for the Automotive Industry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 827, 012018. [Google Scholar] [CrossRef]
- Claypole, J.; Holder, A.; McCall, C.; Winters, A.; Ray, W.; Claypole, T. Inorganic Printed LEDs for Wearable Technology. In Proceedings of the International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles, London, UK, 12 November 2019; p. 24. [Google Scholar]
- Nabil, S.; Jones, L.; Girouard, A. Soft Speakers: Digital Embroidering of DIY Customizable Fabric Actuators. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction, Salzburg, Austria, 14–17 February 2021; pp. 1–12. [Google Scholar]
- Nabil, S.; Kučera, J.; Karastathi, N.; Kirk, D.S.; Wright, P. Seamless Seams: Crafting Techniques for Embedding Fabrics with Interactive Actuation. In Proceedings of the 2019 on Designing Interactive Systems Conference, San Diego, CA, USA, 23–28 June 2019; pp. 987–999. [Google Scholar]
- Andrade-Guel, M.; Reyes-Rodríguez, P.Y.; Cabello-Alvarado, C.J.; Cadenas-Pliego, G.; Ávila-Orta, C.A. Influence of Modified Carbon Black on Nylon 6 Nonwoven Fabric and Performance as Adsorbent Material. Nanomaterials 2022, 12, 4247. [Google Scholar] [CrossRef] [PubMed]
- Millot, C.; Fillot, L.-A.; Lame, O.; Sotta, P.; Seguela, R. Assessment of Polyamide-6 Crystallinity by DSC: Temperature Dependence of the Melting Enthalpy. J. Therm. Anal. Calorim. 2015, 122, 307–314. [Google Scholar] [CrossRef]
- Albini, G.; Brunella, V.; Placenza, B.; Martorana, B.; Guido Lambertini, V. Comparative Study of Mechanical Characteristics of Recycled PET Fibres for Automobile Seat Cover Application. J. Ind. Text. 2019, 48, 992–1008. [Google Scholar] [CrossRef]
- Erem, A.D.; Ozcan, G.; Skrifvars, M.; Cakmak, M. In Vitro Assesment of Antimicrobial Activity and Characteristics of Polyamide 6/Silver Nanocomposite Fibers. Fibers Polym. 2013, 14, 1415–1421. [Google Scholar] [CrossRef]
- Mansour, S.H.; Abd-El-Messieh, S.L.; Abd-El-Nour, K.N. Electrical and Thermal Studies of the Distribution of Carbon Black in a Polyester Matrix in the Presence of Aluminum Oxide. J. Appl. Polym. Sci. 2008, 109, 2250–2258. [Google Scholar] [CrossRef]
- Czel, G.; Sycheva, A.; Janovszky, D. Effect of Different Fillers on Thermal Conductivity, Tribological Properties of Polyamide 6. Sci. Rep. 2023, 13, 845. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Muth, J.; Ghosh, T. Electrical and Mechanical Properties of Carbon-black-filled, Electrospun Nanocomposite Fiber Webs. J. Appl. Polym. Sci. 2007, 104, 2410–2417. [Google Scholar] [CrossRef]
- Kaplan, M.; Ortega, J.; Krooß, F.; Gries, T. Bicomponent Melt Spinning of Polyamide 6/Carbon Nanotube/Carbon Black Filaments: Investigation of Effect of Melt Mass-Flow Rate on Electrical Conductivity. J. Ind. Text. 2023, 53, 15280837231186174. [Google Scholar] [CrossRef]
- Klata, E.; Van De Velde, K.; Krucińska, I. DSC Investigations of Polyamide 6 in Hybrid GF/PA 6 Yarns and Composites. Polym. Test. 2003, 22, 929–937. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, L.; Guan, F.; Gao, Y.; Hedin, N.E.; Zhu, L.; Fong, H. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers. Macromolecules 2007, 40, 6283–6290. [Google Scholar] [CrossRef]
- Beyaz, R.; Ekinci, A.; Yurtbasi, Z.; Oksuz, M.; Ates, M.; Aydin, I. Thermal, Electrical and Mechanical Properties of Carbon Fiber/Copper Powder/Carbon Black Reinforced Hybrid Polyamide 6,6 Composites. High Perform. Polym. 2023, 35, 103–114. [Google Scholar] [CrossRef]
- Cho, E.-C.; Chang-Jian, C.-W.; Huang, J.-H.; Wu, R.T.; Lu, C.-Z.; Lee, K.-C.; Weng, H.C.; Hsu, S.-C. Laser Scribing of Ag-Decorated Graphene for High-Performance and Flexible Heaters. J. Taiwan Inst. Chem. Eng. 2021, 119, 224–231. [Google Scholar] [CrossRef]
- Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Sümmchen, L.; Roy, C. Electrical Conductivity of Thermal Carbon Blacks. Carbon 2001, 39, 1147–1158. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Nagarajan, V.; Rosen, D.W.; Yu, W.; Huang, S.Y. Aerosol Jet Printing on Paper Substrate with Conductive Silver Nano Material. J. Manuf. Process. 2020, 58, 55–66. [Google Scholar] [CrossRef]
- Choi, H.-J.; Ahn, D.; Lee, S.; Yeo, S.Y. Electrical Properties of Silver-Attached Amine Functionalized Carbon Black/Polyethylene Terephthalate Fibers Prepared by Melt-Spinning. Polymers 2019, 11, 1611. [Google Scholar] [CrossRef] [PubMed]
- Arduino Playground-CapacitiveSensor. Available online: https://playground.arduino.cc/Main/CapacitiveSensor/ (accessed on 24 June 2025).
- Matplotlib—Visualization with Python. Available online: https://matplotlib.org/ (accessed on 24 June 2025).
Sample | Tm [°C] First Heating | Tm1 [°C] Second Heating | Tm2 [°C] Second Heating | Melting Enthalpy (ΔHm) Measured [J/g] | Degree of Crystallinity (χc) |
---|---|---|---|---|---|
F-Ag | 223 | 220 | 212 | 57.2 | 31 |
F-CB | 223 | 228 | 210 | 52.1 | 25 |
F-Ag | ||||||
---|---|---|---|---|---|---|
Before Ageing/Stress | After Ageing/Stress | |||||
Sample | l [cm] | RL [Ω/cm] | Sample | Type of Ageing/Stress | l [cm] | RL [Ω/cm] |
1 | 24.8 | 3.2 | 1 | Heat ageing | 24.8 | 3.1 |
2 | 24 | 4.5 | 2 | CTUS | 24 | 4.5 |
3 | 6 | 5.6 | 3 | Thermal cycles | 6 | 5.6 |
4 | 18.7 | 4.5 | 4 | Dry wear | 18.7 | 4.6 |
5 | 19 | 5.0 | 5 | Wet wear | 19 | 4.9 |
6 | 19.5 | 4.6 | 6 | CTUS+wear | 19.5 | 4.5 |
7 | 12.5 | 4.9 | 7 | Cold bending | 12.5 | 4.9 |
8 | 27 | 5.9 | 8 | Pulsed fatigue L | 27 | 5.9 |
9 | 11.5 | 4.6 | 9 | Pulsed fatigue T | 11.5 | 4.5 |
F-CB | ||||||
---|---|---|---|---|---|---|
Before Ageing/Stress | After Ageing/Stress | |||||
Sample | l [cm] | RL [Ω/cm] | Sample | Type of Ageing/Stress | l [cm] | RL [Ω/cm] |
1 | 28 | 25,482 | 1 | Heat ageing | 28 | 27,679 |
2 | 27 | 24,222 | 2 | CTUS | 27 | 24,907 |
3 | 6 | 18,333 | 3 | Thermal cycles | 6 | 18,333 |
4 | 19 | 26,526 | 4 | Dry wear | 19 | 26,842 |
5 | 20 | 27,350 | 5 | Wet wear | 20 | 27,850 |
6 | 18 | 31,944 | 6 | CTUS+wear | 18 | 30,500 |
7 | 12 | 28,417 | 7 | Cold bending | 12 | 28,167 |
8 | 27 | 26,704 | 8 | Pulsed fatigue L | 27 | 26,852 |
9 | 11 | 28,818 | 9 | Pulsed fatigue T | 11 | 28,909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arese, M.; Sarotto, E.; Veca, A.D.; Lambertini, V.G.; Nardi, D.; Sandigliano, M.; Cesano, F.; Brunella, V. Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications. Polymers 2025, 17, 2212. https://doi.org/10.3390/polym17162212
Arese M, Sarotto E, Veca AD, Lambertini VG, Nardi D, Sandigliano M, Cesano F, Brunella V. Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications. Polymers. 2025; 17(16):2212. https://doi.org/10.3390/polym17162212
Chicago/Turabian StyleArese, Matilde, Elio Sarotto, Antonino Domenico Veca, Vito Guido Lambertini, Daniele Nardi, Martina Sandigliano, Federico Cesano, and Valentina Brunella. 2025. "Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications" Polymers 17, no. 16: 2212. https://doi.org/10.3390/polym17162212
APA StyleArese, M., Sarotto, E., Veca, A. D., Lambertini, V. G., Nardi, D., Sandigliano, M., Cesano, F., & Brunella, V. (2025). Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications. Polymers, 17(16), 2212. https://doi.org/10.3390/polym17162212