Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (801)

Search Parameters:
Keywords = e-textiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2062 KiB  
Article
Measuring Blink-Related Brainwaves Using Low-Density Electroencephalography with Textile Electrodes for Real-World Applications
by Emily Acampora, Sujoy Ghosh Hajra and Careesa Chang Liu
Sensors 2025, 25(14), 4486; https://doi.org/10.3390/s25144486 - 18 Jul 2025
Abstract
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after [...] Read more.
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after spontaneous blinking, and indexes neural processes as the brain evaluates new visual information appearing after eye re-opening. Prior studies have reported BRO utility as both a clinical and non-clinical biomarker of cognition, but no study has demonstrated BRO measurement using textile-based EEG devices that facilitate user comfort for real-world applications. Methods: We investigated BRO measurement using a four-channel EEG system with textile electrodes by extracting BRO responses using existing, publicly available EEG data (n = 9). We compared BRO effects derived from textile-based electrodes with those from standard dry Ag/Ag-Cl electrodes collected at the same locations (i.e., Fp1, Fp2, F7, F8) and using the same EEG amplifier. Results: Results showed that BRO effects measured using textile electrodes exhibited similar features in both time and frequency domains compared to dry Ag/Ag-Cl electrodes. Data from both technologies also showed similar performance in artifact removal and signal capture. Conclusions: These findings provide the first demonstration of successful BRO signal capture using four-channel EEG with textile electrodes, providing compelling evidence toward the development of a comfortable and user-friendly EEG technology that uses the simple activity of blinking for objective brain function assessment in a variety of settings. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

15 pages, 5527 KiB  
Article
Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment
by Julia Guérineau, Jollan Ton and Mariia Zhuldybina
Sensors 2025, 25(13), 4240; https://doi.org/10.3390/s25134240 - 7 Jul 2025
Viewed by 263
Abstract
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, [...] Read more.
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, such as comfort, breathability, and flexibility, are meant to be preserved. This article investigates screen printing as a textile post-processing technique for electronic integration, and highlights its versatility, cost-effectiveness, and adaptability in terms of design and customization. The study examines two silver-based inks screen-printed on an Oxford polyester textile substrate with a focus on substrate preparation and treatment. Before printing, the textile samples were cleaned with nitrogen gas and then subjected to low-pressure oxygen plasma treatment. For comparative analysis, two samples printed on polyethylene terephthalate (PET) serve as a reference. The findings highlight the importance of plasma treatment in optimizing the printability of textiles and demonstrate that it notably improves the electrical properties of conductive inks. Despite some remaining challenges, the study indicates that screen-printed electronics show promising potential for advancing the development of e-textiles and sensor-integrated wearables. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

20 pages, 5421 KiB  
Article
Influence of Encapsulation Size and Textile Integration Techniques on the Wash Durability of Textiles with Integrated Electronic Yarn
by Arash M. Shahidi, Parvin Ebrahimi, Kalana Marasinghe, Tharushi Peiris, Zahra Rahemtulla, Carlos Oliveira, Dominic Eberl-Craske, Tilak Dias and Theo Hughes-Riley
Fibers 2025, 13(7), 89; https://doi.org/10.3390/fib13070089 - 2 Jul 2025
Viewed by 570
Abstract
A crucial factor when developing e-textiles is ensuring their robustness and functionality during everyday activities, particularly washing. The ability to launder e-textile garments is not merely a matter of convenience but a necessity for widespread adoption. Incorporating electronics into textiles can lead to [...] Read more.
A crucial factor when developing e-textiles is ensuring their robustness and functionality during everyday activities, particularly washing. The ability to launder e-textile garments is not merely a matter of convenience but a necessity for widespread adoption. Incorporating electronics into textiles can lead to damage due to mechanical and chemical stresses, which most electronics are not designed to withstand. This work focuses on electronic yarn technology (e-yarn), in which electronic functionality is added to textiles by embedding small electronic components into a flexible yarn-like structure. First, the component is soldered onto thin conductive wires. The soldered component is then enclosed in a protective polymer resin (micro-pod). Micro-pods have different diameters depending on the size of the embedded electronic component. The ensemble is finally covered in a textile sheath. This study focuses on the wash durability of e-yarns integrated with textiles in three different ways: embroidered onto the surface of a woven fabric, within a knitted channel in a knitted fabric, and woven as a weft yarn. Further, the work studied the impact of using different sizes of micro-pods on the e-yarns’ wash durability. Ultimately, good wash durability was observed under all testing conditions. Full article
Show Figures

Figure 1

24 pages, 9971 KiB  
Article
Development of Bioactive Cotton, Wool, and Silk Fabrics Functionalized with Origanum vulgare L. for Healthcare and Medical Applications: An In Vivo Study
by Aleksandra Ivanovska, Anica Petrović, Tamara Lazarević-Pašti, Tatjana Ilic-Tomic, Katarina Dimić-Mišić, Jelena Lađarević and Jovana Bradić
Pharmaceutics 2025, 17(7), 856; https://doi.org/10.3390/pharmaceutics17070856 - 30 Jun 2025
Viewed by 356
Abstract
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was [...] Read more.
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was employed to biofunctionalize cotton, wool, and silk fabrics. Results: All biofunctionalized fabrics demonstrated strong antioxidant activity (>99%), while antibacterial efficacy varied by fabric: cotton > 54%, wool > 99%, and silk > 89%. OE-biofunctionalized wool possessed the highest release of OE’s bioactive compounds, followed by silk and cotton, indicating substrate-dependent release behavior. This tunable fabrics’ OE release profile, along with their unique bioactivity, supports targeted applications: OE-functionalized silk for luxury or prolonged therapeutic use (skin-care textiles, post-surgical dressings, anti-aging products), cotton for disposable or short-term use (protective wipes, minor wound coverings), and wool for wound dressings. The biocompatibility and cytotoxicity of OE-biofunctionalized wool were evaluated via in vitro assays using healthy human keratinocytes and in vivo testing in Wistar albino male rats. The obtained results revealed that OE-functionalized wool significantly accelerated wound closure (97.8% by day 14), enhanced collagen synthesis (6.92 µg/mg hydroxyproline), and improved tissue and systemic antioxidant defense while reducing oxidative stress markers in skin and blood samples of rats treated with OE-biofunctionalized wool. Conclusions: OE-biofunctionalized wool demonstrates strong potential as an advanced natural solution for managing chronic wounds. Further clinical validation is recommended to confirm its performance in real-world healthcare settings. This work introduces an entirely new application of OE in textile biofunctionalization, offering alternatives for healthcare and medical textiles. Full article
Show Figures

Graphical abstract

15 pages, 2525 KiB  
Article
Mass Transfer Resistance Considerations for Dye Adsorption on Activated Carbon
by Monika Gwadera, Pawel Brzoskwinia, Szymon Hnatyk and Gabriela Kazberuk
Purification 2025, 1(1), 4; https://doi.org/10.3390/purification1010004 - 17 Jun 2025
Viewed by 224
Abstract
In this study, the adsorption of a textile dye from water onto activated carbon is considered and the results of our own experimental studies on adsorption equilibrium and kinetics are presented. The adsorption isotherm and kinetic curves were found to reflect the possibility [...] Read more.
In this study, the adsorption of a textile dye from water onto activated carbon is considered and the results of our own experimental studies on adsorption equilibrium and kinetics are presented. The adsorption isotherm and kinetic curves were found to reflect the possibility of removing the dye from water by adsorption onto activated carbon. Kinetic studies were conducted using a fixed bed of adsorbent grains. The water and dye solution flowed through the column with the adsorbent. The main aim of this study was to determine diffusion coefficients and mass transfer coefficients. The values of the external mass transfer coefficient and external diffusion coefficient of the dye in water were calculated for different flow rates of the solution, i.e., for different external resistance values. The external diffusion coefficient was DAB = 2.21·10−10 m2/s and the external mass transfer coefficient was between kc = 4.813·10−8 m/s for the lowest solution velocity in the adsorber equal to 0.0693 m/s and kc = 5.623·10−8 m/s for the highest velocity equal to 0.185 m/s. The internal diffusion coefficient and internal mass transfer coefficient, i.e., the coefficients of the transfer from the external surface of a grain to its interior, were determined with the use of the analytical solution of the diffusion and adsorption equation For the apparent solution velocity of 0.0693 m/s the internal diffusion coefficient was Ds = 0.57·10−10 m2/s and the internal mass transfer coefficient was ks = 1.89·10−10 m/s. For the velocity of 0.163 m/s, the internal diffusion coefficient was Ds = 0.84·10−10 m2/s and the internal mass transfer coefficient was ks = 9.00·10−10 m/s. The results of the calculations presented are a measure of the efficiency of a given adsorbent in a given system. The values obtained for the mass transfer coefficients can be used as data for further calculations of this process. Full article
Show Figures

Figure 1

17 pages, 4206 KiB  
Article
Fluorescent Hyperbranched Polymers and Cotton Fabrics Treated with Them as Innovative Agents for Antimicrobial Photodynamic Therapy and Self-Disinfecting Textiles
by Desislava Staneva, Paula Bosch, Petar Grozdanov, Ivanka Nikolova and Ivo Grabchev
Macromol 2025, 5(2), 26; https://doi.org/10.3390/macromol5020026 - 11 Jun 2025
Viewed by 533
Abstract
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, [...] Read more.
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, were deposited on the cotton fabric using the exhaustion method. The fabrics were thoroughly analyzed by reflection spectra, CIEL*a*b* coordinates, and color difference (∆E). The release of the polymers from the cotton surface was studied in a phosphate buffer with pH = 7.4 and an acetate buffer with pH = 4.5 at 37 °C for 10 h. It is shown that at pH = 7.4, the release of the three polymers occurs slowly (about 4–5%). In contrast, in an acidic medium, due to protonation of the tertiary amino group of 1,8-naphthalimide, P1 passes significantly more readily into the aqueous solution (35%). The possibility of singlet oxygen (1O2) generation by the polymers and the cotton fabrics treated with them under sunlight irradiation was followed using an iodometric method. The microbiological activity was investigated against Gram-positive Bacillus cereus and Gram-negative Pseudomonas aeruginosa as model bacterial strains in the dark and after irradiation with sunlight. The antimicrobial activity of the polymers increased after light irradiation, as 1O2 attacks and destroys the bacterial cell membrane. Scanning electron microscopy showed that a stable bacterial biofilm had formed on the untreated cotton surface, but treatment with hyperbranched polymers prevented its formation. However, many bacteria were still observed on the fiber surface when the microbial test was performed in the dark, whereas only a few single bacteria were noticed after the illumination. A virucidal effect against respiratory viruses HRSV-2 and AAdV-5 was observed only after irradiation with sunlight. Full article
Show Figures

Figure 1

17 pages, 7275 KiB  
Article
Thermal Analysis of Polyurethane Coatings Modified with Graphene and Modification Influence on Mechanical Properties of Hybrid Textile Materials Dedicated to Personal Protective Equipment
by Emilia Irzmańska, Magdalena Jurczyk-Kowalska, Anna Boczkowska, Kamila Sałasińska, Kamila Strycharz, Olga Olejnik and Witold Sygocki
Coatings 2025, 15(6), 705; https://doi.org/10.3390/coatings15060705 - 11 Jun 2025
Viewed by 468
Abstract
This paper is focused on the modification of polyurethane coating applied to the outer layer of hybrid textile materials dedicated to personal protective equipment. For this purpose, graphene with various weight fractions, i.e., 0.25 and 0.5 wt.%, was introduced into the polyurethane matrix. [...] Read more.
This paper is focused on the modification of polyurethane coating applied to the outer layer of hybrid textile materials dedicated to personal protective equipment. For this purpose, graphene with various weight fractions, i.e., 0.25 and 0.5 wt.%, was introduced into the polyurethane matrix. The prepared pastes were applied to meta-aramid fabric as coating. The results of the thermogravimetric analysis of polymer coating showed a shift in the onset temperature of the polymer coating to higher values after graphene addition, which indicates an improvement in thermal stability. Considering mechanical properties, the implementation of the coating on meta-aramid fabric reduces tear resistance but this may be improved by the addition of 0.5 wt.% of graphene. Such a hybrid textile material meets the tearing force requirements for protective clothing for firefighters according to EN 469:2020. Full article
(This article belongs to the Special Issue Advances in Coated Fabrics and Textiles)
Show Figures

Figure 1

28 pages, 4154 KiB  
Article
A Data-Driven Lean Manufacturing Framework for Enhancing Productivity in Textile Micro-Enterprises
by Sebastian Tejada, Soledad Valdez, Orkun Yildiz, Rosa Salas-Castro and José C. Alvarez
Sustainability 2025, 17(11), 5207; https://doi.org/10.3390/su17115207 - 5 Jun 2025
Viewed by 1097
Abstract
The textile sector plays a crucial role in Peru’s economy. This case study examines a Micro and Small Enterprise (MSE) in the Peruvian textile sector, which experienced a productivity decline to 0.085 units per sol in 2023, compared to the sector average of [...] Read more.
The textile sector plays a crucial role in Peru’s economy. This case study examines a Micro and Small Enterprise (MSE) in the Peruvian textile sector, which experienced a productivity decline to 0.085 units per sol in 2023, compared to the sector average of 0.13 units per sol. This productivity gap resulted in a 22.45% reduction in the company’s income. Previous studies addressing similar productivity issues have achieved only marginal improvements. This study aims to achieve more significant results by implementing 5S, Total Productive Maintenance (TPM), digitization, and advanced data analytics to enhance data recording and overall productivity. Data analytics is utilized to transform raw data into actionable insights, optimize maintenance, and improve quality control. The methodology was tested through a pilot project in the company’s apparel division, resulting in a productivity increase of 0.10 sol/unit. The study concludes that the applied methodology, supported by data analytics, effectively addresses the productivity issues and optimizes the processes within the case study. In a textile sector MSE, which has a problem with the low productivity present during the past year of 2023, i.e., of 0.085 und/sol whereas is at 0.13 und/sol on the side of the sector, it thus generates a negative economic impact of 22.45% of the company’s income and a presenting a gap of 0.085 und/sol while the sector is at 0.13 und/sol. Previously, studies have been presented, seeking to solve similar problems and obtaining minimally positive results, which is why the motivation to achieve favorable results to ensure that the MSEs in the sector can develop optimally with the support of tools such as 5S, TPM, and innovative technologies such as digitization, thus allowing better recording of their data. The application of this methodology is designed through a pilot in the apparel area of the company, allowing it to achieve a positive result by increasing productivity by 0.10 sol/unit. It can be concluded that this methodology allows solving the problems addressed and optimizing the processes of the case study. Full article
Show Figures

Figure 1

68 pages, 9522 KiB  
Review
Gel Electrolytes in the Development of Textile-Based Power Sources
by Ana Isabel Ribeiro, Cátia Alves, Marta Fernandes, José Abreu, Fábio Pedroso de Lima, Jorge Padrão and Andrea Zille
Gels 2025, 11(6), 392; https://doi.org/10.3390/gels11060392 - 27 May 2025
Viewed by 527
Abstract
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar [...] Read more.
The interest in flexible and wearable electronics is increasing in both scientific research and in multiple industry sectors, such as medicine and healthcare, sports, and fashion. Thus, compatible power sources are needed to develop secondary batteries, fuel cells, supercapacitors, sensors, and dye-sensitized solar cells. Traditional liquid electrolytes pose challenges in the development of textile-based electronics due to their potential for leakage, flammability, and limited flexibility. On the other hand, gel electrolytes offer solutions to these issues, making them suitable choices for these applications. There are several advantages to using gel electrolytes in textile-based electronics, namely higher safety, leak resistance, mechanical flexibility, improved interface compatibility, higher energy density, customizable properties, scalability, and easy integration into manufacturing processes. However, it is also essential to consider some challenges associated with these gels, such as lower conductivity and long-term stability. This review highlights the application of gel electrolytes to textile materials in various forms (e.g., fibers, yarns, woven, knit, and non-woven), along with the strategies for their integration and their resulting properties. While challenges remain in optimizing key parameters, the integration of gel electrolytes into textiles holds immense potential to enhance conductivity, flexibility, and energy storage, paving the way for advanced electronic textiles. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 473
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

13 pages, 12297 KiB  
Article
Study of Wash-Induced Performance Variability in Embroidered Antenna Sensors for Physiological Monitoring
by Mariam El Gharbi, Jamal Abounasr, Raúl Fernández-García and Ignacio Gil
Electronics 2025, 14(10), 2084; https://doi.org/10.3390/electronics14102084 - 21 May 2025
Viewed by 349
Abstract
This paper presents a study on the repeatability of washing effects on two antenna-based sensors for breathing monitoring. One sensor is an embroidered meander antenna-based sensor integrated into a T-shirt, and the other is a loop antenna integrated into a belt. Both sensors [...] Read more.
This paper presents a study on the repeatability of washing effects on two antenna-based sensors for breathing monitoring. One sensor is an embroidered meander antenna-based sensor integrated into a T-shirt, and the other is a loop antenna integrated into a belt. Both sensors were subjected to five washing cycles, and their performance was assessed after each wash. The embroidered meander antenna was specifically compared before and after washing to monitor a male volunteer’s different breathing patterns, that is, eupnea, apnea, hypopnea, and hyperpnea. Stretching tests were also conducted to evaluate the impact of mechanical deformation on sensor behavior. The results highlight the changes in sensor performance across multiple washes and stretching conditions, offering insights into the durability and reliability of these embroidered and loop antennas for practical applications in wearable health monitoring. The findings emphasize the importance of considering both washing and mechanical stress in the design of robust antenna-based sensors. Full article
(This article belongs to the Special Issue Wearable Device Design and Its Latest Applications)
Show Figures

Figure 1

13 pages, 228 KiB  
Article
Associations of Involuntary Smoking with Non-Suicidal Self-Injury and Suicidal Behaviors in Early Adulthood
by Hongyang Li, Yunyun Liu, Feiyu Yuan, Jichao Li, Xiangxin Zhang and Mingyang Wu
Toxics 2025, 13(5), 412; https://doi.org/10.3390/toxics13050412 - 21 May 2025
Viewed by 521
Abstract
Background: Previous studies have demonstrated that involuntary smoking (e.g., secondhand smoke [SHS] and thirdhand smoke [THS]) is not only associated with an increased risk of several physical health problems, such as cardiovascular disease and cancer, but also impacts mental health, including depression and [...] Read more.
Background: Previous studies have demonstrated that involuntary smoking (e.g., secondhand smoke [SHS] and thirdhand smoke [THS]) is not only associated with an increased risk of several physical health problems, such as cardiovascular disease and cancer, but also impacts mental health, including depression and anxiety. However, the relationships between SHS and THS exposure and non-suicidal self-injury (NSSI), suicidal ideation (SI), and suicide attempts (SAs) remain unclear. Methods: Participants were recruited at a Chinese vocational college via voluntary online surveys conducted on campus. Self-reported SHS exposure was determined by the frequency of contact with smokers or detecting tobacco odors in living environments, while THS was assessed through regular contact with smoker-contaminated surfaces (e.g., clothing, furniture, textiles). Logistic regression analysis was performed to evaluate the associations of SHS and THS exposure with the prevalence of NSSI, SI, and SAs in never-smoking participants. Results: The study included 5716 participants (mean age = 19.3 years; females, 85.4%). The prevalence of SHS and THS exposure was 87.6% and 77.4%, with 8.8% reporting ≥15 min of SHS exposure on at least one day per week. After controlling for potential covariates, exposure to SHS (≥15 min on at least one day per week) was significantly associated with the odds of SAs (OR [95%CI] = 1.85 [1.17–2.91]). Additionally, daily THS exposure was significantly associated with increased past-year NSSI prevalence (2.35 [1.29–4.28]) compared to those without THS exposure, with similar associations observed for SI (2.11 [1.28–3.48]) and SAs (2.40 [1.23–4.69]). Conclusions: Exposure to SHS and THS was significantly associated with increased likelihood of NSSI, SI, and SAs among young adults at a Chinese vocational college. Further studies are needed to validate these associations across more diverse populations. Full article
(This article belongs to the Special Issue Neuronal Injury and Disease Induced by Environmental Toxicants)
20 pages, 4911 KiB  
Article
Tannic Acid/Lysozyme-Assembled Loose Nanofiltration Membrane with Outstanding Antifouling Properties for Efficient Dye/Salt Separation
by Jianmao Yang, Xuzhao Yan, Shuai Liu, Mengchen Shi, Ying Huang, Fang Li and Xiaofeng Fang
Separations 2025, 12(5), 129; https://doi.org/10.3390/separations12050129 - 16 May 2025
Viewed by 434
Abstract
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and [...] Read more.
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and efficient fabrication of a biofouling-resistant loose nanofiltration (LNF) membrane with superior dye/salt separation performance. This approach fully leverages the multifunctionality of TA by exploiting its coordination with Fe3⁺ and non-covalent interactions with Lys. The obtained PES/Fe-TA-Lys LNF membrane exhibits a pure water flux of 57.5 L·m−2·h−1, along with exceptional dye rejection rates (98.3% for Congo Red (CR), 99.2% for Methyl Blue (MB), 98.4% for Eriochrome Black T (EBT), and 67.6% for Acid Orange 74 (AO74)) while maintaining minimal salt retention (8.2% for Na2SO4, 4.3% for MgSO4, 3.5% for NaCl, and 2.4% for MgCl2). The PES/Fe-TA-Lys LNF membrane also displays outstanding antifouling performance against bovine serum albumin (BSA), humic acid (HA), and CR, along with strong biofouling resistance against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) via synergistic anti-adhesion and biofilm inhibiting effects. This work presents a novel and scalable approach to fabricating biofouling-resistant LNF membranes, offering great potential for dye/salt separation in textile wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 345
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

Back to TopTop