Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering
Abstract
:1. Introduction
- Contact angle measurements and Owens–Wendt-based surface energy analysis;
- Interfacial morphology characterization via SEM and AFM;
- Quantitative evaluation of bonding, shear, and compressive strength;
- A theoretical penetration and anchoring model.
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Specimen Preparation and Surface Modification
2.3.1. Preparation of Liquid Plug Formulation
2.3.2. OTS Surface Modification of Steel Substrates
2.3.3. Fabrication of Interfacial Shear Specimens
2.4. Interfacial Shear Strength Test
2.5. Interfacial Bonding Strength Test
2.6. Compressive Strength Test
2.7. Microstructural Characterization
2.8. Contact Angle Measurement
3. Results and Discussion
3.1. Interfacial Mechanical Enhancement
3.2. Microstructural Mechanism Analysis
3.3. Thermo-Temporal Effects on Interfacial Bonding Performance
3.4. Theoretical Mechanism Derivation and Multiscale Enhancement Pathway Construction
3.5. Limitations and Future Research
3.5.1. Experimental Scope and Characterization Limitations
3.5.2. Industrial Scalability and Environmental Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.; Xu, Y.; Zhang, Y.; Fu, Z. Study of gel plug for temporary blocking and well-killing technology in low-pressure, leakage-prone gas well. SPE Prod. Oper. 2021, 36, 234–244. [Google Scholar]
- Wu, H.; Ge, J.; Yang, L.; Yang, Y.; Zhang, T.; Guo, H. Developments of polymer gel plug for temporary blocking in SAGD wells. J. Pet. Sci. Eng. 2022, 208, 109650. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, X.G.; Du, K.; Liu, H.K. Development of a new high-temperature and high-strength polymer gel for plugging fractured reservoirs. Upstream Oil Gas Technol. 2020, 5, 100014. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Liao, R.; Zhang, G.; Zhang, M.; Li, X. Study of adhesive self-degrading gel for wellbore sealing. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129567. [Google Scholar] [CrossRef]
- Jia, H.; Kang, Z.; Zhu, J.; Ren, L.; Cai, M.; Wang, T.; Li, Z. High density bromide-based nanocomposite gel for temporary plugging in fractured reservoirs with multi-pressure systems. J. Pet. Sci. Eng. 2021, 205, 108778. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Sun, J.; Lv, K. Use of a polymer gel for killing a high-temperature and high-pressure gas well. SPE J. 2022, 27, 3297–3313. [Google Scholar] [CrossRef]
- Jia, H.; Kang, Z.; Li, Z. Using 1,2 dimethylimidazole to improve gel thermalstability for wellbore plugging in ultra-high temperature fractured reservoirs. J. Dispers. Sci. Technol. 2023, 44, 852–864. [Google Scholar] [CrossRef]
- Guo, X.; Deng, Z.; Li, Z.; Zhang, X.; Zhang, L.; Zhao, Q. The effect of different activators on the performance of an inorganic solidifiable gel plugging fluid. J. Nat. Gas Sci. Eng. 2016, 34, 253–264. [Google Scholar] [CrossRef]
- Ziad, A.B.; Gromakovskii, D.; Al-Sagr, A.; Al-Driweesh, S. First successful application of temporary gel plug replacing calcium carbonate chips to isolate depleted reservoir, case study from Saudi Arabia Gas Field. In SPE International Conference and Exhibition on Formation Damage Control; SPE: Richardson, TX, USA, 2016; p. D021S012R002. [Google Scholar]
- Cheng, J.; Zhou, Q.; Zhou, W.; Wang, Q.; Shi, W. Plugging method of polymer gel with controllable low initial viscosity for dominant flow paths in deep reservoirs and its application. Acta Pet. Sin. 2020, 41, 969. [Google Scholar]
- Tsuji, Y.; Baba, T.; Tsurumi, N.; Murata, H.; Masago, N.; Yoshizawa, K. Theoretical study on the adhesion interaction between epoxy resin including curing agent and plated gold surface. Langmuir 2021, 37, 3982–3995. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, J.P.B.; Abrahami, S.T.; Yilmaz, A.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. Int. J. Adhes. Adhes. 2020, 96, 102450. [Google Scholar] [CrossRef]
- Roura, P.; Fort, J. Local thermodynamic derivation of Young’s equation. J. Colloid Interface Sci. 2004, 272, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xie, K.; Lin, Q.; Cao, R.; Qiu, F. Experimental determination of surface energy for high-energy surface: A review. Adv. Colloid Interface Sci. 2023, 315, 102905. [Google Scholar] [CrossRef] [PubMed]
- Bechikh, A.; Klinkova, O.; Maalej, Y.; Tawfiq, I.; Nasri, R. Sandblasting parameter variation effect on galvanized steel surface chemical composition, roughness and free energy. Int. J. Adhes. Adhes. 2020, 102, 102653. [Google Scholar] [CrossRef]
- Uetsuji, Y.; Yagi, T.; Nakamura, Y. Interfacial adhesive strength of a silane coupling agent with metals: A first principles study. Mater. Today Commun. 2020, 25, 101397. [Google Scholar] [CrossRef]
- Jung, U.; Kim, Y.S.; Suhr, J.; Lee, H.S.; Kim, J. Enhancing adhesion strength via synergic effect of atmospheric pressure plasma and silane coupling agent. Appl. Surf. Sci. 2023, 640, 158227. [Google Scholar] [CrossRef]
- Etzler, F.M. Characterization of surface free energies and surface chemistry of solids, Contact Angle Wettability Adhes. 2003, 3, 219–264. [Google Scholar]
- Joseph, E.; Rajput, S.S.; Patil, S.; Nisal, A. Mechanism of adhesion of natural polymer coatings to chemically modified siloxane polymer. Langmuir 2021, 37, 2974–2984. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Z.; Xie, Y.; He, X.; Su, Y.; Qin, Y.; Tang, D.; Oh, S.K. Fabrication of silane and nano-silica composite modified Bio-based WPU and its interfacial bonding mechanism with cementitious materials. Constr. Build. Mater. 2023, 371, 130819. [Google Scholar] [CrossRef]
OTS | Molecular Structure | Bonding Strength/MPa |
---|---|---|
OTS-14 | 8.7 | |
OTS-16 | 10.2 | |
OTS-18 | 11.0 |
Surface Condition | Contact Angle (°) | Total Surface Energy γs (mJ/m2) | Dispersive Component γsd (mJ/m2) | Polar Component γsp (mJ/m2) |
---|---|---|---|---|
Unmodified surface | 74.0 | 32.1 | 25.3 | 6.8 |
1 wt% OTS-18-modified surface | 53.6 | 40.5 | 29.7 | 10.8 |
Study | Silane Type | Reported Mechanism | Structural Depth | Performance Improvement | Multiscale Coupling |
---|---|---|---|---|---|
van Dam et al. [12] | γ-GPS | Si–O–Fe bonding + roughness | Not reported | Adhesion ↑ ~80% | ✕ |
Uetsuji et al. [16] | APTES | H-bond bridging + surface activation | Nanoscale layer | Adhesion ↑ ~40% | Partial |
Joseph et al. [19] | GPS (w/ heat) | Condensation + thermal curing | Interfacial gel zone | Adhesion ↑ ~60% | ✕ |
Jung et al. [17] | Alkoxysilane + DBD | Plasma-induced Si–O–Si/C–O hybrid | 0.1–0.5 µm | Shear ↑ ~120% | ✔ |
Chen et al. [20] | Mixed silane | Wettability + filler matrix anchoring | Micropore level | Adhesion ↑ ~2× | Partial |
This work | OTS (C18) | Wetting → Penetration → Interlocking | ~391.6 nm | Adhesion ↑ 445% Shear ↑ 73.8% | ✔✔✔ Full |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Liu, Y.; Dong, H.; Liu, X.; Huang, J. Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering. Polymers 2025, 17, 1660. https://doi.org/10.3390/polym17121660
Tian Y, Liu Y, Dong H, Liu X, Huang J. Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering. Polymers. 2025; 17(12):1660. https://doi.org/10.3390/polym17121660
Chicago/Turabian StyleTian, Yuexin, Yintao Liu, Haifeng Dong, Xiangjun Liu, and Jinjun Huang. 2025. "Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering" Polymers 17, no. 12: 1660. https://doi.org/10.3390/polym17121660
APA StyleTian, Y., Liu, Y., Dong, H., Liu, X., & Huang, J. (2025). Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering. Polymers, 17(12), 1660. https://doi.org/10.3390/polym17121660