Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PVDF-g-PNIPAAm Polymer by Alkali Treatment
2.3. Preparation of Temperature-Responsive Separation Membrane
2.3.1. Preparation of PVDF/PVDF-g-PNIPAAm Blending Membrane
2.3.2. Preparation of PVDF/PVDF-g-PNIPAAm/GO Separation Membrane
2.4. PVDF-g-PNIPAAm Characterization
2.5. Membrane Characterization
2.6. Water Permeation Experiments
2.7. Rejection Property of the Membrane
2.8. Antifouling Properties of the Membrane
2.9. Porosity Test of the Membrane
3. Results and Discussion
3.1. Characterization of the Synthesized PVDF-g-PNIPAAm Polymers
3.2. Characterization of PVDF/PVDF-g-PNIPAAm Membrane
3.3. Characterization of PVDF/PVDF-g-PNIPAAm/GO Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Wang, W.; Xie, R.; Ju, X.J.; Chu, L.Y. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 2016, 45, 460–474. [Google Scholar] [CrossRef]
- Suwal, S.; Doyen, A.; Bazinet, L. Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current and recently developed methods. J. Membr. Sci. 2015, 496, 267–283. [Google Scholar] [CrossRef]
- Yusuf, A.; Sodiq, A.; Giwa, A.; Eke, J.; Pikuda, O.; De Luca, G.; Di Salvo, J.L.; Chakraborty, S. A review of emerging trends in membrane science and technology for sustainable water treatment. J. Clean. Prod. 2020, 266, 121867. [Google Scholar] [CrossRef]
- Irfan, M.; Waqas, S.; Arshad, U.; Khan, J.A.; Legutko, S.; Kruszelnicka, I.; Ginter-Kramarczyk, D.; Rahman, S.; Skrzypczak, A. Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment. Materials 2022, 15, 1932. [Google Scholar] [CrossRef]
- Miller, D.J.; Dreyer, D.R.; Bielawski, C.W.; Paul, D.R.; Freeman, B.D. Surface Modification of Water Purification Membranes. Angew. Chem. Int. Ed. 2017, 56, 4662–4711. [Google Scholar] [CrossRef]
- Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016, 6, 22069. [Google Scholar] [CrossRef] [PubMed]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Saffarimiandoab, F.; Gul, B.Y.; Tasdemir, R.S.; Ilter, S.E.; Unal, S.; Tunaboylu, B.; Menceloglu, Y.Z.; Koyuncu, I. A review on membrane fouling: Membrane modification. Desalin. Water Treat. 2021, 216, 47–70. [Google Scholar] [CrossRef]
- Chen, Q.M.; Yu, X.W.; Pei, Z.Q.; Yang, Y.; Wei, Y.; Ji, Y. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem. Sci. 2017, 8, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, L.; Qian, X.H.; Wickramasinghe, S.R. Chemical modification of membrane surface-overview. Curr. Opin. Chem. Eng. 2018, 20, 13–18. [Google Scholar] [CrossRef]
- Zhao, C.S.; Xue, J.M.; Ran, F.; Sun, S.D. Modification of polyethersulfone membranes–A review of methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dorraji, M.S.S.; Ahmadi, A.; Sareshkeh, A.T.; Rasoulifard, M.H. Integrating graphene oxide into layers of PVDF/PVDF@cross-linked sodium alginate/polyamide membrane for efficiently enhancing desalination performances. Sci. Rep. 2022, 12, 16908. [Google Scholar] [CrossRef]
- Yue, X.R.; Ji, X.; Xu, H.Y.; Yang, B.F.; Wang, M.Q.; Yang, Y. Performance investigation on GO-TiO/PVDF composite ultrafiltration membrane for slightly polluted ground water treatment. Energy 2023, 273, 127215. [Google Scholar] [CrossRef]
- Kang, Y.T.; Jiao, S.H.; Zhao, Y.; Wang, B.R.; Zhang, Z.W.; Yin, W.; Tan, Y.M.; Pang, G.S. High-flux and high rejection TiO nanofibers ultrafiltration membrane with porous titanium as supporter. Sep. Purif. Technol. 2020, 248, 117000. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.J.; Nguyen, D.Q.; Bae, J.Y.; Bae, H.W.; Lee, H.; Lee, S.D.; Choi, D.K. Multi-functional zwitterionic compounds as new membrane materials for separating oletin-paraffin mixtures. Green Chem. 2007, 9, 599–604. [Google Scholar] [CrossRef]
- Sun, L.W.; Song, L.J.; Luan, S.F.; Yin, J.H. Progress in Photo-initiated Living Graft Polymerization of Biomaterials. Acta Polym. Sin. 2021, 52, 223–234. [Google Scholar] [CrossRef]
- Yin, B.B.; Wu, Y.N.; Liu, C.F.; Wang, P.; Wang, L.; Sun, G.X. An effective strategy for the preparation of a wide-temperature-range proton exchange membrane based on polybenzimidazoles and polyacrylamide hydrogels. J. Mater. Chem. A 2021, 9, 3605–3615. [Google Scholar] [CrossRef]
- Diez-Pascual, A.M.; Shuttleworth, P.S. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels. Materials 2014, 7, 7472–7512. [Google Scholar] [CrossRef]
- Liu, H.W.; Yang, S.S.; Liu, Y.W.; Miao, M.J.; Zhao, Y.; Sotto, A.; Gao, C.J.; Shen, J.N. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning. J. Membr. Sci. 2019, 579, 230–239. [Google Scholar] [CrossRef]
- Ni, X.Q.; Xing, X.; Deng, Y.F.; Li, Z. Applications of Stimuli-Responsive Hydrogels in Bone and Cartilage Regeneration. Pharmaceutics 2023, 15, 982. [Google Scholar] [CrossRef]
- Mahdavi, H.; Rezaei, M.; Ahmadian-Alam, L.; Amini, M.M. A novel ternary Pd-GO/N-doped TiO2 hierarchical visible-light sensitive photocatalyst for nanocomposite membrane. Korean J. Chem. Eng. 2020, 37, 946–954. [Google Scholar] [CrossRef]
- Wang, X.; Feng, M.; Liu, Y.; Deng, H.N.; Lu, J. Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance. J. Membr. Sci. 2019, 577, 41–50. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Kaszuwara, W.; Nyc, M.; Auguscik, M. Metal substituted sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes with magnetic fillers for gas separation. Sep. Purif. Technol. 2019, 210, 479–490. [Google Scholar] [CrossRef]
- Okada, K.; Miura, Y.; Chiya, T.; Tokudome, Y.; Takahashi, M. Thermo-responsive wettability via surface roughness change on polymer-coated titanate nanorod brushes toward fast and multi-directional droplet transport. RSC Adv. 2020, 10, 28032–28036. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.S.; Wang, R.; Chen, C.; Chen, B.L.; Zhu, X.Y. High-Flux pH-Responsive Ultrafiltration Membrane for Efficient Nanoparticle Fractionation. ACS Appl. Mater. Inter. 2021, 13, 56575–56583. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.G.; Feng, S.S.; Li, J.X.; Chen, J.R.; Li, F.Q.; Lin, H.J.; Yu, G.Y. Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: Novel mechanisms underlying the interesting enhanced membrane performance. Sci. Rep. 2017, 7, 2721. [Google Scholar] [CrossRef]
- Li, Y.; Chu, L.Y.; Zhu, J.H.; Wang, H.D.; Xia, S.L.; Chen, W.M. Thermoresponsive gating characteristics of Poly(-isopropylacrylamide)-grafted porous poly(vinylidene fluoride) membranes. Ind. Eng. Chem. Res. 2004, 43, 2643–2649. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, L.T.; Luo, Z.H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J. 2016, 287, 474–481. [Google Scholar] [CrossRef]
- Pan, Y.Q.; He, L.; Ren, Y.S.; Wang, W.; Wang, T.H. Analysis of Influencing Factors on the Gas Separation Performance of Carbon Molecular Sieve Membrane Using Machine Learning Technique. Membranes 2022, 12, 100. [Google Scholar] [CrossRef]
- Plisko, T.V.; Bildyukevich, A.V.; Burts, K.S.; Hliavitskaya, T.A.; Penkova, A.V.; Ermakov, S.S.; Ulbricht, M. Modification of Polysulfone Ultrafiltration Membranes via Addition of Anionic Polyelectrolyte Based on Acrylamide and Sodium Acrylate to the Coagulation Bath to Improve Antifouling Performance in Water Treatment. Membranes 2020, 10, 264. [Google Scholar] [CrossRef]
- Wang, Z.G.; Liu, Z.Y.; Chen, L.; Zhao, Y.P.; Feng, X. Influence of Solvent-Evaporation Effect on the Structure and Properties of PVDF--PNIPAAm Membranes. Polym. Plast. Technol. 2018, 57, 1352–1359. [Google Scholar] [CrossRef]
- Pourziad, S.; Omidkhah, M.R.; Abdollahi, M. Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment. J. Ind. Eng. Chem. 2020, 83, 401–408. [Google Scholar] [CrossRef]
- Zhao, G.L.; Chen, W.N. Biofouling formation and structure on original and modified PVDF membranes: Role of microbial species and membrane properties. RSC Adv. 2017, 7, 37990–38000. [Google Scholar] [CrossRef]
Membranes | PVDF (wt%) | PVDF-g-PNIPAAm (wt%) | GO (wt%) |
---|---|---|---|
1 | 19.8 | 0.20 | 0.00 |
2 | 19.8 | 0.20 | 0.25 |
3 | 19.8 | 0.20 | 0.50 |
4 | 19.8 | 0.20 | 0.75 |
5 | 19.8 | 0.20 | 1.00 |
Number | The Mass Ratio of PVDF to NIPAAm | XPNIPAAm (%) |
---|---|---|
m21 | 2:1 | 4.9 |
m11 | 1:1 | 8.3 |
m12 | 1:2 | 16.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, T.; Ji, Y.; Meng, X.; Wang, Q. Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation. Polymers 2024, 16, 416. https://doi.org/10.3390/polym16030416
Ji T, Ji Y, Meng X, Wang Q. Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation. Polymers. 2024; 16(3):416. https://doi.org/10.3390/polym16030416
Chicago/Turabian StyleJi, Tong, Yuan Ji, Xiangli Meng, and Qi Wang. 2024. "Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation" Polymers 16, no. 3: 416. https://doi.org/10.3390/polym16030416
APA StyleJi, T., Ji, Y., Meng, X., & Wang, Q. (2024). Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation. Polymers, 16(3), 416. https://doi.org/10.3390/polym16030416