Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications
Abstract
:1. Introduction
2. Microcellular Foaming for EMI Shielding Applications
2.1. Supercritical CO2 Foaming
2.2. Other Microcellular Foaming Technologies
3. Carbon Foams Obtained from Polymer Foam Templates
4. Hybrid Nanofillers/Nanohybrids
5. Selective Distribution of Conductive Nanofillers
6. Computational Approaches
7. 3D Printing
8. Future Perspectives and Concluding Remarks
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Omana, L.; Chandran, A.; John, R.E.; Wilson, R.; George, K.C.; Unnikrishnan, N.V.; Varghese, S.S.; George, G.; Simon, S.M.; Paul, I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS Omega 2022, 7, 25921–25927. [Google Scholar] [CrossRef] [PubMed]
- Panahi-Sarmad, M.; Noroozi, M.; Abrisham, M.; Eghbalinia, S.; Teimoury, F.; Bahramian, A.R.; Dehghan, P.; Sadri, M.; Goodarzi, V. A Comprehensive Review on Carbon-Based Polymer Nanocomposite Foams as Electromagnetic Interference Shields and Piezoresistive Sensors. ACS Appl. Electron. Mater. 2020, 2, 2318–2350. [Google Scholar] [CrossRef]
- Orasugh, J.T.; Ray, S.S. Functional and Structural Facts of Effective Electromagnetic Interference Shielding Materials: A Review. ACS Omega 2023, 8, 8134–8158. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Ahmad, I.; Zhao, T.; Aldaghri, O.; Ibnaouf, K.H.; Eisa, M.H. Nanocomposite Foams of Polyurethane with Carbon Nanoparticles-Design and Competence towards Shape Memory, Electromagnetic Interference (EMI) Shielding, and Biomedical Fields. Crystals 2023, 13, 1189. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Noroozi, M.; Xiao, X.; Park, C.B. Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Ind. Eng. Chem. Res. 2022, 61, 1545–1568. [Google Scholar] [CrossRef]
- Dun, D.; Luo, J.; Wang, M.; Wang, X.; Zhou, H.; Wang, X.; Wen, B.; Zhang, Y. Electromagnetic Interference Shielding Foams Based on Poly(vinylidene fluoride)/Carbon Nanotubes Composite. Macromol. Mater. Eng. 2021, 306, 2100468. [Google Scholar] [CrossRef]
- Aghvami-Panah, M.; Wang, A.; Panahi-Sarmad, M.; Esfahani, S.A.S.; Seraji, A.A.; Shahbazi, M.; Ghaffarian, R.; Jamalpour, S.; Xiao, X. A comparison study on polymeric nanocomposite foams with various carbon nanoparticles: Adjusting radiation time and effect on electrical behavior and microcellular structure. Int. J. Smart Nano Mater. 2022, 13, 504–528. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, C.; Zhou, Y.; Fan, Y.; Chen, J.; Hui, L.; Zhang, X.; Qin, J. Design and research of high-performance electromagnetic interference shielding GO/NiNCs/PMMA microcellular foams. J. Appl. Polym. Sci. 2023, 140, e54070. [Google Scholar] [CrossRef]
- Lee, C.-W.; Lin, C.-H.; Wang, L.-Y.; Lee, Y.-H. Developing sustainable and recyclable high-efficiency electromagnetic interference shielding nanocomposite foams from the upcycling of recycled poly(ethylene terephthalate). Chem. Eng. J. 2023, 468, 143447. [Google Scholar] [CrossRef]
- Zhu, N.; Jiang, T.; Zeng, X.; Li, S.; Shen, C.; Zhang, C.; Gong, W.; He, L. High strength and light weight polyamide 6/carbon fiber composite foams for electromagnetic interference shielding. J. Appl. Polym. Sci. 2023, 140, e53818. [Google Scholar] [CrossRef]
- Wang, L.; Wu, M.; Ren, Q.; Weng, Z.; Li, W.; Zhu, X.; Zheng, W.; Yi, X. Strong and high void fraction PP/CNS nanocomposite foams fabricated by core-back foam injection molding. J. Appl. Polym. Sci. 2023, 140, e53521. [Google Scholar] [CrossRef]
- Dehghan, P.; Simiari, M.; Gholampour, M.; Aghvami-Panah, M.; Amirkiai, A. Tuning the electromagnetic interference shielding performance of polypropylene cellular nanocomposites: Role of hybrid nanofillers of MXene and reduced graphene oxide. Polym. Test. 2023, 126, 108162. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Tang, M.; Zhou, L.; Li, J.; Fan, X.; Shi, X.; Qin, J. Synergistic Effect of Carbon Nanotube and Graphene Nanoplates on the Mechanical, Electrical and Electromagnetic Interference Shielding Properties of Polymer Composites and Polymer Composite Foams. Chem. Eng. J. 2018, 353, 381–393. [Google Scholar] [CrossRef]
- Cheng, H.; Pan, Y.; Wang, T.; Zhou, Y.; Qin, Y.; Liu, C.; Shen, C.; Liu, X. Synergistic effects between carbon nanotube and anisotropy-shaped Ni in polyurethane sponge to improve electromagnetic interference shielding. Sci. China Mater. 2023, 66, 2803–2811. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, H.; Jiang, R.; Liu, Z.; Zhu, S.; Li, W.; Jiang, L.; Zhou, X. Lightweight polyurethane composite foam for electromagnetic interference shielding with high absorption characteristic. J. Colloid Interface Sci. 2023, 649, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhou, Q.; Wang, M.; Dale, J.; Qiang, Z.; Fan, Y.; Zhu, M.; Ye, C. Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Compos. Part B 2021, 204, 108497. [Google Scholar] [CrossRef]
- Wang, X.; Zou, F.; Zhao, Y.; Li, G.; Liao, X. Electromagnetic interference shielding composites and the foams with gradient structure obtained by selective distribution of MWCNTs into hard domains of thermoplastic polyurethane. Compos. Part A 2024, 176, 107861. [Google Scholar] [CrossRef]
- Liu, T.; Feng, H.; Zeng, W.; Jin, C.; Kuang, T. Facile Fabrication of Absorption-Dominated Biodegradable Poly(lactic acid)/Polycaprolactone/Multi-Walled Carbon Nanotube Foams towards Electromagnetic Interference Shielding. J. Compos. Sci. 2023, 7, 395. [Google Scholar] [CrossRef]
- Feng, D.; Liu, P.; Wang, Q. Exploiting the Piezoresistivity and EMI Shielding of Polyetherimide/Carbon Nanotube Foams by Tailoring Their Porous Morphology and Segregated CNT Networks. Compos. Part A 2019, 124, 105463. [Google Scholar] [CrossRef]
- Wu, M.; Ren, Q.; Gao, P.; Ma, W.; Shen, B.; Wang, L.; Zheng, W.; Cui, P.; Yi, X. Enhanced electrical conductivity and EMI shielding performance through cell size-induced CNS alignment in PP/CNS foam. Compos. Commun. 2023, 43, 101716. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Song, Q.; Liu, Y.; Zhao, Q.; Shen, Y. One-Pot Preparation of Porous Piezoresistive Sensor with High Strain Sensitivity via Emulsion-Templated Polymerization. Compos. Part A 2017, 101, 195–198. [Google Scholar] [CrossRef]
- Peng, Q.; Ma, M.; Chu, Q.; Lin, H.; Tao, W.; Shao, W.; Chen, S.; Shi, Y.; He, H.; Wang, X. Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures. J. Mater. Chem. A 2023, 11, 10857–10866. [Google Scholar] [CrossRef]
- Bregman, A.; Taub, A.; Michielssen, E. Computational design of composite EMI shields through the control of pore morphology. MRS Commun. 2018, 8, 1153–1157. [Google Scholar] [CrossRef]
- Lv, Q.; Peng, Z.; Meng, Y.; Pei, H.; Chen, Y.; Ivanov, E.; Kotsilkova, R. Three-Dimensional Printing to Fabricate Graphene-Modified Polyolefin Elastomer Flexible Composites with Tailorable Porous Structures for Electromagnetic Interference Shielding and Thermal Management Application. Ind. Eng. Chem. Res. 2022, 61, 16733–16746. [Google Scholar] [CrossRef]
- Shi, S.; Peng, Z.; Jing, J.; Yang, L.; Chen, Y. 3D Printing of Delicately Controllable Cellular Nanocomposites Based on Polylactic Acid Incorporating Graphene/Carbon Nanotube Hybrids for Efficient Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2020, 8, 7962–7972. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, M.; Li, R.; Lu, H.; Yu, R.; Xu, Z.; Li, D.; Tang, Y.; Xing, W. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding. Compos. Part A 2021, 145, 106363. [Google Scholar] [CrossRef]
- Guo, H.; Hua, T.; Qin, J.; Wu, Q.; Wang, R.; Qian, B.; Li, L.; Shi, X. A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor Applications. Adv. Mater. Technol. 2022, 7, 2101699. [Google Scholar] [CrossRef]
- Xue, T.T.; Yang, Y.; Yu, D.Y.; Wali, Q.; Wang, Z.Y.; Cao, X.S.; Fan, W.; Liu, T.X. 3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection. Nano-Micro Lett. 2023, 15, 45. [Google Scholar] [CrossRef]
- Yang, J.; Yan, X.; Xu, X.; Chen, Y.; Han, W.; Chai, X.; Liu, X.; Liu, J.; Liu, C.; Zhang, H.; et al. Progress in the Foaming of Polymer-based Electromagnetic Interference Shielding Composites by Supercritical CO2. Chem. Asian J. 2023, 18, e202201000. [Google Scholar] [CrossRef]
- Dugad, R.; Radhakrishna, G.; Gandhi, A. Recent advancements in manufacturing technologies of microcellular polymers: A review. J. Polym. Res. 2020, 27, 182. [Google Scholar] [CrossRef]
- Altan, M. Thermoplastic foams: Processing, manufacturing, and characterization. In Polymerization; IntechOpen: London, UK, 2018; pp. 117–137. [Google Scholar]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef]
- Guanghong, H.; Yue, W. Microcellular foam injection molding process. In Some Critical Issues for Injection Molding; IntechOpen: London, UK, 2012; pp. 175–202. [Google Scholar]
- Hou, J.; Zhao, G.; Wang, G.; Dong, G.; Xu, J. A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance. Mater. Des. 2017, 127, 115–125. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, W.; Ling, J.; Shen, B.; Zheng, W.; Park, C.B. Ultrasonic irradiation enhanced cell nucleation in microcellular poly(lactic acid): A novel approach to reduce cell size distribution and increase foam expansion. Ind. Eng. Chem. Res. 2011, 50, 13840–13847. [Google Scholar] [CrossRef]
- Wang, H.; Li, W. Selective ultrasonic foaming of polymer for biomedical applications. J. Manuf. Sci. Eng. 2008, 130, 021004. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Kumar, V. Creating open-celled solid-state foams using ultrasound. J. Cell. Plast. 2009, 45, 353–369. [Google Scholar] [CrossRef]
- Gandhi, A.; Asija, N.; Chauhan, H.; Bhatnagar, N. Ultrasound-induced nucleation in microcellular polymers. J. Appl. Polym. Sci. 2014, 131, 9076–9080. [Google Scholar] [CrossRef]
- Huang, J.-N.; Jing, X.; Geng, L.-H.; Chen, B.-Y.; Mi, H.-Y.; Peng, X.-F. A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. J. Supercrit. Fluids 2015, 103, 28–37. [Google Scholar] [CrossRef]
- Xu, L.Q.; Huang, H.X. Formation mechanism and tuning for bi-modal cell structure in polystyrene foams by synergistic effect of temperature rising and depressurization with supercritical CO2. J. Supercrit. Fluids 2016, 109, 177–185. [Google Scholar] [CrossRef]
- Radhakrishna, G.; Dugad, R.; Gandhi, A. Bimodal Microcellular Morphology Evaluation in ABS-Foamed Composites Developed Using Step-Wise Depressurization Foaming Process. Polym. Eng. Sci. 2020, 60, 113–131. [Google Scholar] [CrossRef]
- Cho, S.; Cha, S.W.; Seo, J.; Ahn, J. A study on the foaming ratio and optical characteristics of microcellular foamed plastics produced by a repetitive foaming process. Int. J. Precis. Eng. Manuf. 2013, 14, 1147–1152. [Google Scholar] [CrossRef]
- Seo, J.-H.; Ohm, W.-S.; Cho, S.-H.; Cha, S.W. Effects of repeated microcellular foaming process on cell morphology and foaming ratio of microcellular plastics. Polym-Plast. Technol. Eng. 2011, 50, 588–592. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.P.; Hur, S.H.; Choi, W.M.; Chung, J.S. Facile fabrication of stacked rGO/MoS2 reinforced polyurethane composite foam for effective electromagnetic interference shielding. Compos. Part A 2023, 166, 107366. [Google Scholar] [CrossRef]
- Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B 2018, 149, 188–197. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Yu, N.; Gao, Q.; Fan, X.; Wei, X.; Zhang, G.; Ma, Z.; He, X. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 2020, 158, 45–54. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, R.; Gupta, A.; Agrawal, P.R.; Dwivedi, N.; Mondal, D.P.; Srivastava, A.K.; Dhakate, S.R. Enhanced electromagnetic interference shielding properties of phenolic resin derived lightweight carbon foam decorated with electrospun zinc oxide nanofibers. Mater. Today Commun. 2022, 30, 103055. [Google Scholar] [CrossRef]
- Tang, R.; Xu, P.; Dong, J.; Gui, H.; Zhang, T.; Ding, Y.; Murugadoss, V.; Naik, N.; Pan, D.; Huang, M.; et al. Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 2022, 188, 492–502. [Google Scholar] [CrossRef]
- Gao, S.; Ding, J.; Wang, W.; Lu, J. Carbon foam/reduced graphene oxide/paraffin composite phase change material for electromagnetic interference shielding and thermal management. J. Energy Storage 2023, 58, 106355. [Google Scholar] [CrossRef]
- Huang, C.-H.; Dong, Y.-E. Multifunctional composite foam with high strength and sound-absorbing based on step assembly strategy for high performance electromagnetic shielding. Polym. Compos. 2023, 44, 4993–5002. [Google Scholar] [CrossRef]
- Ma, L.; Wei, L.; Hamidinejad, M.; Park, C.B. Layered polymer composite foams for broadband ultra-low reflectance EMI shielding: A computationally guided fabrication approach. Mater. Horiz. 2023, 10, 4423–4437. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, K.; Zhang, X.; Hou, J.; Chen, J. Lightweight electromagnetic interference shielding poly(L-lactic acid)/poly(D-lactic acid)/carbon nanotubes composite foams prepared by supercritical CO2 foaming. Int. J. Biol. Macromol. 2022, 210, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Chen, J.; Liao, X.; Song, P.; Li, G. Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO2. Compos. Sci. Technol. 2021, 213, 108895. [Google Scholar] [CrossRef]
- Champa-Bujaico, E.; García-Díaz, P.; Díez-Pascual, A.M. Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 10712. [Google Scholar] [CrossRef] [PubMed]
- Salah, L.S.; Chouai, M.; Danlée, Y.; Huynen, I.; Ouslimani, N. Simulation and Optimization of Electromagnetic Absorption of Polycarbonate/CNT Composites Using Machine Learning. Micromachines 2020, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Feng, C.-P.; Li, J.; Guo, S.-Y. Machine learning to optimize nanocomposite materials for electromagnetic interference shielding. Compos. Sci. Technol. 2022, 223, 109414. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Lin, A.; Hu, B.; Yan, R.; McCusker, J.; Chen, W.; McGuinness, D.L.; Schadler, L.; Brinson, L.C. NanoMine schema: An extensible data representation for polymer nanocomposites. APL Mater. 2018, 6, 111108. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, J. Developing Hybrid Machine Learning Models for Estimating the Unconfined Compressive Strength of Jet Grouting Composite: A Comparative Study. Appl. Sci. 2020, 10, 1612. [Google Scholar] [CrossRef]
- Lubbers, N.; Agarwal, A.; Chen, Y.; Son, S.; Mehana, M.; Kang, Q.; Karra, S.; Junghans, C.; Germann, T.C.; Viswanathan, H.S. Modeling and scale-bridging using machine learning: Nanoconfinement effects in porous media. Sci. Rep. 2020, 10, 13312. [Google Scholar] [CrossRef]
- Shi, M.; Feng, C.-P.; Tu, Y.-L.; Shi, G.-S.; He, P.-Y.; Zhang, Y.; Zhang, J.; Li, J.; Guo, S. Visualization of Deep Convolutional Neural Networks to Investigate Porous Nanocomposites for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2023, 15, 22602–22615. [Google Scholar] [CrossRef]
- Pesce, N.; Fortunato, M.; Tamburrano, A. 3-D Printed Graphene-Based Piezoresistive Foam Mat for Pressure Detection Through Electrical Resistance Tomography and Machine Learning Classification Techniques. IEEE Sens. Lett. 2023, 7, 2502604. [Google Scholar] [CrossRef]
Polymer | Nanofiller(s) | Foaming Method | EMI SE | Key Innovation | Ref |
---|---|---|---|---|---|
PVDF | CNT | Solid state scCO2 | 30 dB·cm3/g |
| [7] |
PS | CB, CNT, GnP | Microwave scCO2 | >50 dB·cm3/g |
| [8] |
PMMA | GO-NiNCs | Solid state scCO2 | 53 dB |
| [9] |
rPET 1 | SWCNT | Solid state scCO2 | 210 dB·cm3/g |
| [10] |
PA6 | CF | Chemical injection molding | 37 dB |
| [11] |
PP | CNS | Core back injection molding |
| [12] | |
PP | MXene/rGO | Solid state scCO2 | >25 dB |
| [13] |
PMMA | GnP/CNT | Solid state scCO2 | >35 dB |
| [14] |
PU | CNT/Ni particles | Dip-coating | >42 dB |
| [15] |
PU | Fe3O4-PVA/GO-Ag particles | Dip-coating | >30 dB |
| [16] |
PU | SWCNT | Double dip-coating | 56 dB |
| [17] |
TPU | CNT | Solution mixing, layer-by-layer casting, hot pressing | >35 dB |
| [18] |
PCL-PLA | CNT | NaCl–water washing | 23 dB (90 dB·cm3/g) |
| [19] |
PEI | CNT | Solid state scCO2 | >30 dB |
| [20] |
PP | CNT | Core back injection molding | 60 dB |
| [21] |
Styrene, BA, DVB and EHMA | rGO | Emulsion template |
| [22] | |
PDMS | CNT-Ni | Vacuum-assisted potting | 45 dB |
| [23] |
PLA | GnP/CNT/CB | FDM 3D printing | 35 dB |
| [24] |
POE | GnP | FDM 3D printing | 35 dB |
| [25] |
PLA | GnP/CNT | FDM 3D printing | 37 dB |
| [26] |
CS | CNT | FDM 3D printing | >25 dB |
| [27] |
Aerogel | GO | FDM 3D printing | 69 dB |
| [28] |
PI aerogel | MXene-CNT | FDM 3D printing | >68 dB |
| [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M. Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications. Polymers 2024, 16, 195. https://doi.org/10.3390/polym16020195
Antunes M. Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications. Polymers. 2024; 16(2):195. https://doi.org/10.3390/polym16020195
Chicago/Turabian StyleAntunes, Marcelo. 2024. "Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications" Polymers 16, no. 2: 195. https://doi.org/10.3390/polym16020195
APA StyleAntunes, M. (2024). Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications. Polymers, 16(2), 195. https://doi.org/10.3390/polym16020195