Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials
Abstract
:1. Introduction
2. Fire-Retardant Chemicals
2.1. Treatment Methods
2.1.1. Impregnation
2.1.2. Coatings
3. Synthesis and Characterization of Fire-Retardant Polymers
4. Mechanism of Flame Retardancy
5. Research on Flame-Retardant Chemicals
5.1. Discussions
5.2. Limitation, Challengs, and Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bakhtiari, F. International cooperative initiatives and the United Nations Framework Convention on Climate Change. Clim. Policy 2018, 18, 655–663. [Google Scholar] [CrossRef]
- Rogelj, J.; Geden, O.; Cowie, A.; Reisinger, A. Net-zero emissions targets are vague: Three ways to fix. Nature 2021, 591, 365–368. [Google Scholar] [CrossRef]
- Costa, C.; Wollenberg, E.; Benitez, M.; Newman, R.; Gardner, N.; Bellone, F. Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 2022, 12, 15064. [Google Scholar] [CrossRef]
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings—An energy system approach. Build. Environ. 2012, 51, 361–369. [Google Scholar] [CrossRef]
- Webster, M.D.; Arehart, J.; Ruthwik, C.; Aloisio, J.; Karineh, G.; Gryniuk, M.; Hogroian, J.; Jezeritz, C.; Johnson, L.; Kestner, D. Achieving Net Zero Embodied Carbon in Structural Materials by 2050; American Society of Civil Engineers: Reston, VA, USA, 2020. [Google Scholar]
- Zang, X.; Liu, W.; Wu, D.; Pan, X.; Zhang, W.; Bian, H.; Shen, R. Contemporary Fire Safety Engineering in Timber Structures: Challenges and Solutions. Fire 2024, 7, 2. [Google Scholar] [CrossRef]
- Hull, T.R.; Law, R.J.; Bergman, Å. Chapter 4—Environmental drivers for replacement of halogenated flame retardants. In Polymer Green Flame Retardants; Papaspyrides, C.D., Kiliaris, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–179. ISBN 978-0-444-53808-6. [Google Scholar]
- Shaw, S. Halogenated Flame Retardants: Do the Fire Safety Benefits Justify the Risks? Rev. Environ. Health 2010, 25, 261–306. [Google Scholar] [CrossRef]
- Sabet, M. Advancements in halogen-free polymers: Exploring flame retardancy, mechanical properties, sustainability, and applications. Polym. Technol. Mater. 2024, 63, 1794–1818. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef]
- Sandberg, D. Additives in Wood products—today and future development. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Kutnar, A., Muthu, S.S., Eds.; Springer: Singapore, 2016; pp. 105–172. ISBN 978-981-10-0655-5. [Google Scholar]
- Hazarika, A.; Baishya, P.; Maji, T.K. Bio-based Wood Polymer Nanocomposites: A sustainable high-performance material for future. In Eco-Friendly Polymer Nanocomposites: Processing and Properties; Thakur, V.K., Thakur, M.K., Eds.; Springer: New Delhi, India, 2015; pp. 233–257. ISBN 978-81-322-2470-9. [Google Scholar]
- Ling, M.; Yin, N.; Chen, Y.; Zhou, Z.; Chen, H.; Dai, C.; Huang, J.; Zhang, W. Construction of polylactic acid-based flame retardant composites by zinc oxide and bamboo carbon. Carbon Lett. 2024, 34, 665–675. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Yan, Q.; Lyu, J.; Lei, Y.; Lyu, S.; Yan, L. Green bio-derived epoxidized linseed-oil plasticizer improves the toughness, strength, and dimensional stability of furfuryl alcohol-modified wood. Ind. Crops Prod. 2024, 217, 118886. [Google Scholar] [CrossRef]
- Du, X.; Li, Z.; Zhang, J.; Li, X.; Du, G.; Deng, S. Development of environmentally friendly glyoxal-based adhesives with outstanding water repellency utilizing wheat gluten protein. Int. J. Biol. Macromol. 2024, 273, 133081. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rao, Y.; Liu, P.; Wu, L.; Zhang, G.; Zhang, J.; Xie, F. High-amylose starch-based gel as green adhesive for plywood: Adhesive property, water-resistance, and flame-retardancy. Carbohydr. Polym. 2024, 339, 122247. [Google Scholar] [CrossRef] [PubMed]
- Nine, M.J.; Tran, D.N.H.; Tung, T.T.; Kabiri, S.; Losic, D. Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Appl. Mater. Interfaces 2017, 9, 10160–10168. [Google Scholar] [CrossRef]
- Hu, X.; Sun, Z. Nano CaAlCO3-layered double hydroxide-doped intumescent fire-retardant coating for mitigating wood fire hazards. J. Build. Eng. 2021, 44, 102987. [Google Scholar] [CrossRef]
- Guo, G.; Park, C.B.; Lee, Y.H.; Kim, Y.S.; Sain, M. Flame retarding effects of nanoclay on wood–fiber composites. Polym. Eng. Sci. 2007, 47, 330–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Li, M.-C.; Zhang, S.; Zhou, W.; Mei, C.; Pan, M. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 2023, 452, 139360. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Walkiewicz, J.; Dziurka, D.; Mirski, R. Nanomaterials to improve fire properties in wood and wood-based composite panels. In Emerging Nanomaterials: Opportunities and Challenges in Forestry Sectors; Taghiyari, H.R., Morrell, J.J., Husen, A., Eds.; Springer: Cham, Germany, 2023; pp. 65–96. ISBN 978-3-031-17378-3. [Google Scholar]
- Qiu, S.; Wang, X.; Yu, B.; Feng, X.; Mu, X.; Yuen, R.K.K.; Hu, Y. Flame-retardant-wrapped polyphosphazene nanotubes: A novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J. Hazard. Mater. 2017, 325, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, S.-N.; Wu, Q.; Li, Q.; Huang, J.; Li, W.; Zhang, W.; Wang, S. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties. Compos. Part B Eng. 2021, 212, 108699. [Google Scholar] [CrossRef]
- Rantuch, P.; Kvorková, V.; Wachter, I.; Martinka, J.; Štefko, T. Is biochar a suitable fire retardant for furfurylated wood? Compos. Part C Open Access 2024, 14, 100454. [Google Scholar] [CrossRef]
- Kolya, H.; Mondal, S.; Kang, C.-W.; Nah, C. 18—The use of polymer-graphene composites in catalysis. In Woodhead Publishing Series in Composites Science and Engineering; Rahaman, M., Nayak, L., Hussein, I.A., Das, N.C.B.T.-P.N.C.G., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 537–556. ISBN 978-0-12-821639-2. [Google Scholar]
- Taib, M.N.A.M.; Antov, P.; Savov, V.; Fatriasari, W.; Madyaratri, E.W.; Wirawan, R.; Osvaldová, L.M.; Hua, L.S.; Ghani, M.A.A.; Al Edrus, S.S.A.O.; et al. Current progress of biopolymer-based flame retardant. Polym. Degrad. Stab. 2022, 205, 110153. [Google Scholar] [CrossRef]
- Padil, V.V.T.; Akshay Kumar, K.P.; Murugesan, S.; Torres-Mendieta, R.; Wacławek, S.; Cheong, J.Y.; Černík, M.; Varma, R.S. Sustainable and safer nanoclay composites for multifaceted applications. Green Chem. 2022, 24, 3081–3114. [Google Scholar] [CrossRef]
- Green, J. An overview of the fire retardant chemicals industry, Past—Present—Future. Fire Mater. 1995, 19, 197–204. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A.; Li, X. Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J. Hazard. Mater. 2016, 304, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Beyer, G. Chapter 1—Introduction to flame retardant systems. In Flame Retardant Nanocomposites; Thomas, S., Vahabi, H., Somasekharan, L., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 1–22. ISBN 978-0-443-15421-8. [Google Scholar]
- Kaur, A.; Kapoor, K.; Mandot, A.; Godara, S.K.; Sood, A.K.; Singh, M. Fire-Retardant coatings for modern lightweight materials. In Functional Coatings: Innovations and Challenges; Davim, J.P., Arya, R.K., Verros, G.D., Eds.; Wiley: Hoboken, New Jersey, USA, 2024; pp. 202–230. ISBN 9781394207305. [Google Scholar]
- Purser, D. Toxicity of fire retardants in relation to life safety and environmental hazards. Fire Retard. Mater. 2001, 69–127. [Google Scholar]
- Zhu, K.; Yang, Y.; Lin, C.; Wang, Q.; Ye, D.; Jiang, H.; Wu, K. Effect of Compounded Aluminum Hydroxide Flame Retardants on the Flammability and Smoke Suppression Performance of Asphalt Binders. ACS Omega 2024, 9, 2803–2814. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Bhakare, M.A.; Some, S. One-pot synthesis of aluminum phosphate-supported, chitosan-linked expandable graphite as a novel flame retardant for textile. J. Appl. Polym. Sci. 2024, 141, e55581. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Xu, L.; Zhu, F.; Zhang, Y.; Meng, Y.; Xia, X. Preparation of ethyl cellulose microencapsulated ammonium polyphosphate and its application in flame retardant cellulose paper. Ind. Crops Prod. 2024, 210, 118132. [Google Scholar] [CrossRef]
- Goller, S.M.; Schartel, B.; Krüger, S. Phosphorus features halogen–calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy. Thermochim. Acta 2024, 737, 179764. [Google Scholar] [CrossRef]
- Lin, M.; Guo, X.; Xu, Y.; Zhang, X.; Hu, D. A Top-Down Approach to the Fabrication of Flame-Retardant Wood Aerogel with In Situ-Synthesized Borax and Zinc Borate. Materials 2024, 17, 2638. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Zhao, X.; Li, N.; Guo, X.; Zhao, L.; Yin, Y. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid. Int. J. Biol. Macromol. 2024, 267, 131450. [Google Scholar] [CrossRef]
- Levchik, S.; Bocchini, S.; Camino, G. Halogen-containing flame retardants. In Fire Retardancy of Polymeric Materials; Wilkie, C.A., Morgan, A.B., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 58–80. [Google Scholar]
- Gao, L.; Zheng, G.; Zhou, Y.; Hu, L.; Feng, G.; Zhang, M. Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym. Degrad. Stab. 2014, 101, 92–101. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, S.J.; Che, X.X.; Shen, C.H. Synthesis and characterization of a flame retardant Dimethyl methyl Phosphonate (DMMP) and its application in FRP. Adv. Mater. Res. 2013, 804, 29–35. [Google Scholar] [CrossRef]
- Kausar, A.; Anwar, Z.; Muhammad, B. Overview of nonflammability characteristics of graphene and graphene oxide-based polymeric composite and essential flame retardancy techniques. Polym. Plast. Technol. Eng. 2017, 56, 488–505. [Google Scholar] [CrossRef]
- Wi, S.; Kim, Y.U.; Choi, J.Y.; Shin, B.; Kim, S. Active protection against fire: Enhancing the flame retardancy of sandwich panels using an expandable graphite layer formation. Int. J. Therm. Sci. 2024, 195, 108658. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, K.; Kang, C.; Wu, B.; Huang, Z. An experimental investigation of flame retardant mechanism of hydrated lime in asphalt mastics. Mater. Des. 2016, 103, 223–229. [Google Scholar] [CrossRef]
- Wang, L.; Yan, W.-J.; Zhong, C.-Z.; Chen, C.-R.; Luo, Q.; Pan, Y.-T.; Tang, Z.-H.; Xu, S. Construction of TiO2-based decorated with containing nitrogen-phosphorus bimetallic layered double hydroxides for simultaneously improved flame retardancy and smoke suppression properties of EVA. Mater. Today Chem. 2024, 36, 101952. [Google Scholar] [CrossRef]
- Dun, L.; Ouyang, Z.; Sun, Q.; Yue, X.; Wu, G.; Li, B.; Kang, W.; Wang, Y. A Simple and Efficient Magnesium Hydroxide Modification Strategy for Flame-Retardancy Epoxy Resin. Polymers 2024, 16, 1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Zhang, J.; Guo, W. Synergistic flame retardant modification of bio-based nylon 56 by graphitic carbon nitride and melamine cyanurate. J. Vinyl Addit. Technol. 2024, 30, 456–469. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, C.; Yu, K.; Si, Z.; Zhang, J. PTFE-based flame retardant coatings optimized by melamine polyphosphate/aluminum diethyl hypophosphite/anhydrous transparent powder through orthogonal experiment. Prog. Org. Coat. 2024, 191, 108423. [Google Scholar] [CrossRef]
- Huang, G.; Liang, H.; Wang, Y.; Wang, X.; Gao, J.; Fei, Z. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly (vinyl alcohol). Mater. Chem. Phys. 2012, 132, 520–528. [Google Scholar] [CrossRef]
- Bi, X.; Song, K.; Zhang, H.; Pan, Y.-T.; He, J.; Wang, D.-Y.; Yang, R. Dimensional change of red phosphorus into nanosheets by metal–organic frameworks with enhanced dispersion in flame retardant polyurea composites. Chem. Eng. J. 2024, 482, 148997. [Google Scholar] [CrossRef]
- Chen, Q.; Huo, S.; Lu, Y.; Ding, M.; Feng, J.; Huang, G.; Xu, H.; Sun, Z.; Wang, Z.; Song, P. Heterostructured Graphene@ Silica@ Iron Phenylphosphinate for Fire-Retardant, Strong, Thermally Conductive Yet Electrically Insulated Epoxy Nanocomposites. Small 2024, 20, 2310724. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, K.; Nakamura, H.; Maruta, K.; Bodi, A.; Hemberger, P. Unimolecular Decomposition Mechanism of Trimethyl Phosphate. Chem. Eur. J. 2024, 30, e202401750. [Google Scholar] [CrossRef] [PubMed]
- Gumus, N.; Doganci, E.; Aytac, A. Evaluations of the effects of different flame retardants combinations on particleboards produced using urea–formaldehyde resin. Eur. J. Wood Wood Prod. 2024, 82, 747–759. [Google Scholar] [CrossRef]
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Deng, H.; Duan, W.; Zhu, J.; Wei, Y.; Li, W. Flame retardant properties of a guanidine phosphate–zinc borate composite flame retardant on wood. ACS Omega 2021, 6, 11015–11024. [Google Scholar] [CrossRef] [PubMed]
- Öhrn, O.; Sykam, K.; Gawusu, S.; Mensah, R.A.; Försth, M.; Shanmugam, V.; Babu, N.B.K.; Sas, G.; Jiang, L.; Xu, Q. Surface coated ZnO powder as flame retardant for wood: A short communication. Sci. Total Environ. 2023, 897, 165290. [Google Scholar] [CrossRef] [PubMed]
- Rezaei Qazviniha, M.; Piri, F. Preparation, Identification, and Evaluation of the Thermal Properties of Novolac Resins Modified with TiO2, MgO, and V2O5 Oxides. Mech. Adv. Compos. Struct. 2024, 11, 1–9. [Google Scholar]
- Jin, E.; Chung, Y.-J. Evaluation of combustion characteristics for wood specimens coated with metal oxides of different oxidation states in the secondary stage of combustion (II). Wood Sci. Technol. 2024, 58, 253–271. [Google Scholar] [CrossRef]
- Wen, M.-Y.; Kang, C.-W.; Park, H.-J. Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. J. Wood Sci. 2014, 60, 367–375. [Google Scholar] [CrossRef]
- Che, W.; Li, Z.; Huo, S.; Dinh, T.; Hong, M.; Maluk, C.; Yu, Y.; Xie, Y. Fire-retardant anti-microbial robust wood nanocomposite capable of fire-warning by graded-penetration impregnation. Compos. Part B Eng. 2024, 280, 111482. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, P.; Chen, Z.; Li, L.; Huang, Y. Flame retardancy, thermal stability, and hygroscopicity of wood materials modified with melamine and amino trimethylene phosphonic acid. Constr. Build. Mater. 2021, 267, 121042. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Małozięć, D. Hazards Resulting from the Burning Wood Impregnated with Selected Chemical Compounds. Appl. Sci. 2020, 10, 6093. [Google Scholar] [CrossRef]
- Mariappan, T. Fire retardant coatings. In New Technologies in Protective Coatings; Giudice, C., Canosa, G., Eds.; IntechOpen: London, UK, 2017; p. 28. [Google Scholar]
- Lu, S.; Feng, Y.; Zhang, P.; Hong, W.; Chen, Y.; Fan, H.; Yu, D.; Chen, X. Preparation of flame-retardant polyurethane and its applications in the leather industry. Polymers 2021, 13, 1730. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.H.; Dasari, A.; Tan, K.H.; Qian, L. Intumescent fire-retardant acrylic coatings: Effects of additive loading ratio and scale of testing. Prog. Org. Coat. 2021, 150, 105985. [Google Scholar] [CrossRef]
- Mathews, L.D.; Capricho, J.C.; Peerzada, M.; Salim, N.V.; Parameswaranpillai, J.; Hameed, N. Recent progress and multifunctional applications of fire-retardant epoxy resins. Mater. Today Commun. 2022, 33, 104702. [Google Scholar] [CrossRef]
- Wang, F.; Pan, S.; Zhang, P.; Fan, H.; Chen, Y.; Yan, J. Synthesis and application of phosphorus-containing flame retardant plasticizer for polyvinyl chloride. Fibers Polym. 2018, 19, 1057–1063. [Google Scholar] [CrossRef]
- Temane, L.T.; Ray, S.S.; Orasugh, J.T. Review on Processing, Flame-Retardant Properties, and Applications of Polyethylene Composites with Graphene-Based Nanomaterials. Macromol. Mater. Eng. 2024, 2400104. [Google Scholar] [CrossRef]
- Kang, F.; Han, H.; Wang, H.; He, D.; Zhou, M. Construction of a flame retardant three-dimensional network structure in sisal/polypropylene composites. Ind. Crops Prod. 2024, 209, 117973. [Google Scholar] [CrossRef]
- Kassaun, B.B.; Fatehi, P. Solvent-Free Lignin-Silsesquioxane wood coating formulation with superhydrophobic and Flame-Retardant functionalities. Chem. Eng. J. 2024, 493, 152582. [Google Scholar] [CrossRef]
- Trifeldaite-Baranauskiene, G.; Stankute, E.; Aniskevich, A.; Zeleniakiene, D.; Zukiene, K. Preparation and Characterisation of Composites from Industrial Waste: Wood Flour and Expanded Ethylene Vinyl Acetate. Mech. Compos. Mater. 2024, 60, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Huang, J.; Wang, Y. A flame retardant poly vinyl alcohol/graphene oxide/phytic acid composite for a quick response and ultra-long fire alarm. J. Mater. Chem. A 2024, 12, 6050–6066. [Google Scholar] [CrossRef]
- Chen, R.; Lu, S.; Li, C.; Li, M.; Lo, S. Characterization of thermal decomposition behavior of commercial flame-retardant ethylene–propylene–diene monomer (EPDM) rubber. J. Therm. Anal. Calorim. 2015, 122, 449–461. [Google Scholar] [CrossRef]
- Gadhave, R.V.I.; Dhawale, P. V State of research and trends in the development of polyvinyl acetate-based wood adhesive. Open J. Polym. Chem. 2022, 12, 13–42. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, F.; Wang, X.-M.; Wang, Q. Flammability, thermal stability, and mechanical properties of wood flour/polycarbonate/polyethylene bio-based composites. Ind. Crops Prod. 2021, 169, 113638. [Google Scholar] [CrossRef]
- Çelen, U.; Balçik Tamer, Y.; Berber, H. The potential use of natural expanded perlite as a flame retardant additive for acrylonitrile-butadiene-styrene based composites. J. Vinyl Addit. Technol. 2024, 30, 277–293. [Google Scholar] [CrossRef]
- Ren, G.; Fang, Y.; Yang, R.; Zhu, J.; Fu, Y.; Wang, W.; Ou, R.; Song, Y.; Wang, Q. Creation of a high strength, hydrophobic and fireproof surface on wood by polyamide acid under mild and simple conditions. Prog. Org. Coat. 2024, 189, 108313. [Google Scholar] [CrossRef]
- Jimenez, M.; Gallou, H.; Duquesne, S.; Jama, C.; Bourbigot, S.; Couillens, X.; Speroni, F. New routes to flame retard polyamide 6, 6 for electrical applications. J. Fire Sci. 2012, 30, 535–551. [Google Scholar] [CrossRef]
- De Hoyos-Martínez, P.L.; Issaoui, H.; Herrera, R.; Labidi, J.; Charrier-El Bouhtoury, F. Wood fireproofing coatings based on biobased phenolic resins. ACS Sustain. Chem. Eng. 2021, 9, 1729–1740. [Google Scholar] [CrossRef]
- Wei, A.; Ou, M.; Wang, S.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Preparation of a Highly Flame-Retardant Urea–Formaldehyde Resin and Flame Retardance Mechanism. Polymers 2024, 16, 1761. [Google Scholar] [CrossRef]
- Wu, M.; Emmerich, L.; Kurkowiak, K.; Militz, H. Combined treatment of wood with thermosetting resins and phosphorous flame retardants. Eur. J. Wood Wood Prod. 2024, 82, 167–174. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Li, L.; Wang, X.; Gong, J. Co-pyrolysis model for polylactic acid (PLA)/wood composite and its application in predicting combustion behaviors. Renew. Energy 2024, 225, 120267. [Google Scholar] [CrossRef]
- Al-Mosawi, A.I.; Abdulsada, S.A.; Rijab, M.A.; Hashim, A. Flame retardancy of biopolymer polyhydroxyalkanoate composite. Int. J. 2015, 3, 883–886. [Google Scholar]
- Passauer, L.P. P–N-modified starch: A polymeric flame retardant for wood-based materials. In Bio-Based Flame-Retardant Technology for Polymeric Materials; Hu, Y., Nabipour, H., Wang, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 339–368. [Google Scholar]
- Breuer, R.; Zhang, Y.; Erdmann, R.; Vernaez Hernandez, O.E.; Kabasci, S.; Kostka, M.; Reinhardt, N.; Facklam, M.; Hopmann, C. Development and processing of flame retardant cellulose acetate compounds for foaming applications. J. Appl. Polym. Sci. 2020, 137, 48863. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Wei, A.; Wang, S.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Preparation of a Flame-Retardant Curing Agent Based on Phytic Acid–Melamine Ion Crosslinking and Its Application in Wood Coatings. Polymers 2024, 16, 1557. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.L.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers 2014, 6, 2037–2050. [Google Scholar] [CrossRef]
- Dobkowski, Z. Thermal analysis techniques for characterization of polymer materials. Polym. Degrad. Stab. 2006, 91, 488–493. [Google Scholar] [CrossRef]
- Venkateshaiah, A.; Padil, V.V.T.; Nagalakshmaiah, M.; Waclawek, S.; Černík, M.; Varma, R.S. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers 2020, 12, 512. [Google Scholar] [CrossRef]
- Praharaj, S.; Rout, D. Structural investigation of carbon nanotube-polymer composites by FTIR, UV, NMR, and Raman Spectroscopy. In Handbook of Carbon Nanotubes; Abraham, J., Thomas, S., Kalarikkal, N., Eds.; Springer: Cham, Germany, 2020; pp. 1–24. ISBN 978-3-319-70614-6. [Google Scholar]
- Danilova, S.N.; Okhlopkova, A.A.; Yarusova, S.B.; Dyakonov, A.A.; Gordienko, P.S.; Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Vasilev, A.P.; Zhevtun, I.G.; et al. Study on the Impact of a Combination of Synthetic Wollastonite and 2-Mercaptobenzothiazole-Based Fillers on UHMWPE Polymeric Matrix. J. Compos. Sci. 2023, 7, 431. [Google Scholar] [CrossRef]
- Abhilash, V.; Rajender, N.; Suresh, K. Chapter 14—X-ray diffraction spectroscopy of polymer nanocomposites. In Spectroscopy of Polymer Nanocomposites; Thomas, S., Rouxel, D., Ponnamma, D., Eds.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 410–451. ISBN 978-0-323-40183-8. [Google Scholar]
- Shojaeiarani, J.; Bajwa, D.S.; Stark, N.M. Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J. Appl. Polym. Sci. 2018, 135, 46468. [Google Scholar] [CrossRef]
- Gupta, P.; Ruzicka, E.; Benicewicz, B.C.; Sundararaman, R.; Schadler, L.S. Dielectric Properties of Polymer Nanocomposite Interphases Using Electrostatic Force Microscopy and Machine Learning. ACS Appl. Electron. Mater. 2023, 5, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Rongpipi, S.; Govindaraju, I.; B, R.; Mal, S.S.; Gomez, E.W.; Gomez, E.D.; Kalita, R.D.; Nath, Y.; Mazumder, N. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microsc. Res. Tech. 2022, 85, 1990–2015. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, M.; Seide, G. Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules 2020, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Crossley, R.; Schubel, P.; Stevenson, A. Furan matrix and flax fibre as a sustainable renewable composite: Mechanical and fire-resistant properties in comparison to phenol, epoxy and polyester. J. Reinf. Plast. Compos. 2013, 33, 58–68. [Google Scholar] [CrossRef]
- Dewaghe, C.; Lew, C.Y.; Claes, M.; Belgium, S.A.; Dubois, P. 23—Fire-retardant applications of polymer–carbon nanotubes composites: Improved barrier effect andsynergism. In Polymer–Carbon Nanotube Composites; McNally, T., Pötschke, P., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 718–745. ISBN 978-1-84569-761-7. [Google Scholar]
- STN EN ISO 4589-2: 2017; Plastics. Determination of Burning Behaviour by Oxygen Index. Part 2: Ambient Temperature Test. ISO: Geneva, Switzerland, 2017.
- ASTM E 1354; Standard Test Method for Heat and Visible Smoke Release Rates for Materials Using an OxygenConsumption Calorimeter. ASTM International: West Conshohocken, PA, USA,, 2004.
- ISO 5660-1; Reaction to Fire Tests—Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release(Cone calorimeter method). ISO: Geneva, Switzerland, 2002.
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer: Berlin/Heidelberg, Germany, 2007; Volume 143, ISBN 1402053568. [Google Scholar]
- Kumar, S.; Dhawan, R.; Shukla, S.K. Flame Retardant Polymer Nanocomposites: An Overview. Macromol. Symp. 2023, 407, 2200089. [Google Scholar] [CrossRef]
- Park, H.-J.; Kang, Y.-G.; Kim, H. A study on combustion characteristics of fire retardant treated wood. J. Korean Wood Sci. Technol. 2005, 33, 38–44. [Google Scholar]
- Fang, Y.Q.; Wang, Q.W.; Song, Y.M.; Zhang, Z.J. The fire retardancy of wood flour/PS composites treated with APP-starch. Polym. Mater. Sci. Eng 2008, 24, 83–86. [Google Scholar]
- Jiang, J.; Li, J.; Hu, J.; Fan, D. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Constr. Build. Mater. 2010, 24, 2633–2637. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, C.; Li, L. Influence of ammonium polyphosphate modified with 3-(methylacryloxyl) propyltrimethoxy silane on mechanical and thermal properties of wood flour–polypropylene composites. J. Appl. Polym. Sci. 2011, 122, 849–855. [Google Scholar] [CrossRef]
- Son, D.-W.; Kang, M.-R.; Kim, J.-I.; Park, S.-B. Fire performance of the wood treated with inorganic fire retardants. J. Korean Wood Sci. Technol. 2012, 40, 335–342. [Google Scholar] [CrossRef]
- Seo, H.J.; Kang, M.R.; Son, D.W. Combustion properties of woods for indoor use (II). J. Korean Wood Sci. Technol. 2015, 43, 478–485. [Google Scholar] [CrossRef]
- Chai, Y.B.; Liu, J.L.; Zhen, X. Dimensional stability, mechanical properties and fire resistance of MUF-boron treated wood. Adv. Mater. Res. 2012, 341, 80–84. [Google Scholar] [CrossRef]
- Park, S.-H.; Baek, E.-S. A Study on the combustion characteristics of wood according to flame resistant treatment. Fire Sci. Eng. 2015, 29, 12–18. [Google Scholar] [CrossRef]
- Jang, E.-S.; Yong, W.-J.; Jo, S.-U.; Kang, C.-W.; Park, H.-J. Evaluation of flame retardant impregnation in perforated Hinoki (Chamaecyparis obtusa) plywood: Flame retardant impregnation in perforated Hinoki plywood. Wood Fiber Sci. 2024, 56, 43–50. [Google Scholar]
- Kumar, S.P.; Takamori, S.; Araki, H.; Kuroda, S. Flame retardancy of clay–sodium silicate composite coatings on wood for construction purposes. RSC Adv. 2015, 5, 34109–34116. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Sousa, S.P.B.; Nóvoa, P.R.O. An Investigation on Fire and Flexural Mechanical Behaviors of Nano and Micro Polyester Composites Filled with SiO2 and Al2O3 Particles. Mater. Today Proc. 2015, 2, 8–19. [Google Scholar] [CrossRef]
- Rocha, J.d.S.; Escócio, V.A.; Visconte, L.L.Y.; Pacheco, É.B.A. V Thermal and flammability properties of polyethylene composites with fibers to replace natural wood. J. Reinf. Plast. Compos. 2021, 40, 726–740. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Xu, M.; Liu, L.; Wang, W.; Gao, S.; Li, B. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood. Polym. Adv. Technol. 2021, 32, 4805–4814. [Google Scholar] [CrossRef]
- Price, E.J.; Covello, J.; Paul, R.; Wnek, G.E. Tannic acid based super-intumescent coatings for prolonged fire protection of cardboard and wood. SPE Polym. 2021, 2, 153–168. [Google Scholar] [CrossRef]
- Özkan, O.E.; Temiz, A.; Tor, Ö.; Vurdu, H. Effect of post-heat treatment on fire retardant treated wood properties. Holzforschung 2022, 76, 645–657. [Google Scholar] [CrossRef]
- Yan, Y.; Dong, S.; Jiang, H.; Hou, B.; Wang, Z.; Jin, C. Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach. ACS Omega 2022, 7, 29369–29379. [Google Scholar] [CrossRef] [PubMed]
- Hull, T.R.; Witkowski, A.; Hollingbery, L. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Song, P.; Huang, G.; Yu, Y.; Fu, S. Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites. ACS Sustain. Chem. Eng. 2016, 4, 2422–2431. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Zhang, J.; Ren, Y.; Huo, H.; Zhang, X.; Huang, K.; Rezakazemi, M.; Zhang, Z. Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix. Adv. Compos. Hybrid Mater. 2023, 6, 140. [Google Scholar] [CrossRef]
- Yu, F.; Ba, Z.; Gao, Z.; Wang, Y.; Xie, Y.; Wang, H.; Qiu, Z.; Xiao, Z. Modification with lignin-based N-P flame retardant to improve the flame retardancy and smoke suppression of wood. Chem. Eng. J. 2024, 493, 152827. [Google Scholar] [CrossRef]
Fire-Retardant Chemicals | Chemical Formula | MP/BP (°C) | Ref. |
---|---|---|---|
Aluminum hydroxide | Al(OH)3 | 300 | [33] |
Aluminum phosphate | AlPO4 | 1800 | [34] |
Ammonium polyphosphate | (NH4)3PO4 | 260–320 | [35] |
Antimony trioxide | Sb2O3 | 656 | [36] |
Borax | Na2B4O7·10H2O | 743 | [37] |
Boric acid | H3BO3 | 170 | [38] |
Brominated flame retardants | Varies | 280–345 | [39] |
Chlorinated flame retardants | Varies | Varies | [39] |
Diethyl ethyl phosphonate | C6H15O3P | 198 | [40] |
Dimethyl methyl phosphonate | C3H9O3P | 181 | [41] |
Graphene and graphene oxide | C, CxHyOz | 3000 | [42] |
Graphite | C | 3650 | [43] |
Hydrated lime | Ca(OH)2 | 580 | [44] |
Layered double hydroxides | Varies | >900 | [45] |
Magnesium hydroxide | Mg(OH)2 | 350 | [46] |
Melamine | C3H6N6 | 345 | [46] |
Melamine cyanurate | C6H9N9O3 | 350 | [47] |
Melamine phosphate | C3H9N6O4P | 120–122 | [48] |
Melamine polyphosphate | C3H9N6O4P | >350 | [49] |
Red phosphorus | P4 | 590 | [50] |
Silicon dioxide (silica) | SiO2 | 1610 | [51] |
Trimethylphosphate | C3H9O4P | 156 | [52] |
Triphenyl phosphate | C18H15O4P | 50 | [53] |
Tris(1,3-dichloro-2-propyl) phosphate | C9H15Cl3O4P | 315 | [54] |
Zinc borate | Zn2B6O11·3.5H2O | 980 | [55] |
Zinc oxide | ZnO | 1975 | [56] |
Vanadium oxide | V2O5 | 1967 | [57] |
Tin oxide | SnO, SnO2 | 1630 | [58] |
Polymer or Adhesive Polymer | Chemical Formula | MP/BP (°C) | Ref. |
---|---|---|---|
Polyurethane (PU) | (C3H8N2O)n | 136 | [64] |
Acrylic resins | (C5H8O2)n | 160 | [65] |
Epoxy resins | (C21H25ClO5)n | 120 | [66] |
Polyvinyl chloride (PVC) | (C2H3Cl)n | 100 | [67] |
Polyethylene (PE) | (C2H4)n | 115–135 | [68] |
Polypropylene (PP) | (C3H6)n | 130–170 | [69] |
Polyester resins | (C14H22O6)n | 170–172 | [69] |
Silicone polymers | (SiO2)n | 1414 | [70] |
Ethylene-vinyl acetate (EVA) copolymers | (C2H4)n(C4H6O2)m | 90 | [71] |
Polyvinyl alcohol (PVA) | (C2H4O)n | 200 | [72] |
Ethylene propylene diene monomer (EPDM) | (C8H16)n | 100–160 | [73] |
Polyvinyl acetate (PVAc) | (C4H6O2)n | 60 | [74] |
Polycarbonate (PC) | (C16H14O3)n | 220–230 | [75] |
Acrylonitrile butadiene styrene (ABS) | (C8H8·C4H6·C3H3N)n | 105 | [76] |
Polyimides | (C22H10O4)n | 360 | [77] |
Polyamide (Nylon) | (C12H22N2O2)n | 220 | [78] |
Phenolic resins | C8H6O2 | 90–150 | [79] |
Urea-formaldehyde resins | C2H6N2O2 | 130 | [80] |
Melamine-formaldehyde resins | C4H8N6O | 354 | [81] |
Polylactic acid (PLA) | (C3H4O2)n | 150–160 | [82] |
Polyhydroxy alkanoates (PHA) | (C6H10O2)n | 170 | [83] |
Starch-based polymers | (C6H10O5)n | 200–220 | [84] |
Cellulose acetate | (C10H16O8)n | 230 | [85] |
Lignin-based polymers | Varies | 108–150 | [86] |
UL-94 Vo | Each specimen must have the first flame (t1) and the second flame (t2) less than 10 s. The total time for the first and second flames (t1 + t2) across all five specimens must be less than 50 s. Additionally, the second and third flames (t2 + t3) must be less than 30 s for each specimen. There should be no after-flame or afterglow up to the holding clamp, and no burning drops are allowed. |
UL-94 V1 | Each specimen must have t1 and t2 less than 30 s. The total time across all five specimens must be less than 250 s. Additionally, the t2 and t3 flames (t2 + t3) must be less than 60 s for each specimen. There should be no after-flame or afterglow up to the holding clamp, and no burning drops are allowed. |
UL-94 V2 | Each specimen must have t1 and t2 less than 30 s. The total time (t1 + t2) across all five specimens must be less than 250 s. Additionally, the second and third flames (t2 + t3) must be less than 60 s for each specimen. There should be no after-flame or afterglow up to the holding clamp, but burning drops are allowed. |
Study | Flame Retardant | Key Results | Thermal Properties | Flammability Test Results | Ref. |
---|---|---|---|---|---|
Study on TA-based composites | Tannic acid (TA) | Time to failure: 15–27 min | Peak HRR: 211 vs. 108 kW/m2; total HRR: 37.2 vs. 24.4 MJ/m2 | Lower fire growth rates: 2.43 vs. 1.27 kW/m2s−1 | [120] |
Study on biochar-furfurylated wood | Furfuryl alcohol and biochar | Enhanced thermal stability and reduced flammability up to 70% | Decreased effective heat of combustion; higher char residue | Higher mass loss at low temperatures | [121] |
Study on mineral fillers | Aluminum/magnesium hydroxide and magnesium carbonate | Endothermic decomposition, increased heat capacity, and reduced flammability by up to 70% | Quantified fire-retardant effects | Improved LOI, UL-94, and cone calorimeter results | [123] |
Study on bio-composites with lignin | Lignin with P, N, and Cu elements | Reduced heat release rate, total heat release, and smoke production | Increased char residues | Enhanced flame retardancy | [124] |
Study on MPUC flame retardant | Carboxymethylation alkali lignin, phytic acid, and melamine-urea-glyoxal resin | Total heat release reduction: 56.8%; total smoke production decrease: 92.3% | LOI: 23.6% to 41.5% | Passed UL-94 V-1 rating | [126] |
Study on CS-GO-APP coating | Chitosan, graphene oxide, and ammonium polyphosphate | LOI: 22 to 42; HRR decrease: 105.50 to 57.51 kW/m2; THR decrease: 62.43 to 34.31 MJ/m2 | Decreased initial and maximum thermal decomposition temperature | Excellent durability in water resistance and abrasion tests | [122] |
This study introduces a PVA composite enhanced with graphene oxide and phytic acid | Graphene oxide and phytic acid | Achieved exceptional flame retardancy | pHRR reduction of 88.6%; THR reduction of 66.5% | Maintained structural integrity for over 2400 s | [72] |
Study on polycarbonate (PC) hybridization in wood flour/high-density polyethylene (HDPE) composites | Boric acid and polycarbonate | Improved fire retardancy and mechanical properties | Char residue rate increased by 6.7% at 28% PC content | Heat release rate reduced upon combustion | [75] |
Phenolic resins based on two natural products, namely, lignin and tannins, were implemented as bio-based fireproofing coatings for wood | Lignin and tannins with inorganic nanoparticles | Reduced heat release during combustion, improved wood integrity, and delayed flame propagation | Improved thermal resistance with TGA | Comparable performance to top commercial coatings | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolya, H.; Kang, C.-W. Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials. Polymers 2024, 16, 2045. https://doi.org/10.3390/polym16142045
Kolya H, Kang C-W. Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials. Polymers. 2024; 16(14):2045. https://doi.org/10.3390/polym16142045
Chicago/Turabian StyleKolya, Haradhan, and Chun-Won Kang. 2024. "Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials" Polymers 16, no. 14: 2045. https://doi.org/10.3390/polym16142045
APA StyleKolya, H., & Kang, C. -W. (2024). Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials. Polymers, 16(14), 2045. https://doi.org/10.3390/polym16142045