Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Instrumentation and Procedures
3. Results and Discussion
3.1. Electrochemical Deposition of Thin Films of PThBA
3.2. The Electrochemical Activity and Conductivity of PThBA
3.3. The Chemosensitive Properties of PThBA Films
3.4. The Detection of Glucose in the Presence of Albumin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Rahman, M.; Ahammad, A.; Jin, J.; Ahn, J.; Lee, J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855–4886. [Google Scholar] [CrossRef]
- Niu, X.; Shi, L.B.; Zhao, H.L.; Lan, M.B. Advanced strategies for improving the analytical performance of Pt-based nonenzymatic electrochemical glucose sensors: A minireview. Anal. Methods 2016, 8, 1755–1764. [Google Scholar] [CrossRef]
- Vashist, S.; Zheng, D.; Al-Rubeaan, K.; Luong, J.; Sheu, F. Technology behind commercial devices for blood glucose monitoring in diabetes management: A review. Anal. Chim. Acta 2011, 703, 124–136. [Google Scholar] [CrossRef]
- Sabu, C.; Henna, T.; Raphey, V.; Nivitha, K.; Pramod, K. Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 2019, 141, 111201. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Chang, S.; Chen, C.; Liu, J. Non-invasive blood glucose monitoring technology: A review. Sensors 2020, 20, 6935. [Google Scholar] [CrossRef]
- Pullano, S.; Greco, M.; Bianco, M.; Foti, D.; Brunetti, A.; Fiorillo, A. Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices. Theranostics 2022, 12, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Boo, H.; Chung, T. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef]
- Los, J.; Simpson, B.; Wiesner, K. The kinetics of mutarotation of D-glucose with consideration of an intermediate free-aldehyde form. Am. Chem. Soc. 1956, 78, 1564–1568. [Google Scholar] [CrossRef]
- Skou, E. The inhibition of the electrochemical oxidation of glucose at platinum at pH = 7.4 by chloride ions. Acta Chem. Scand. 1973, 27, 2239–2241. [Google Scholar] [CrossRef]
- Wilde, C.P.; Zhang, M. Oxidation of glucose at electrodeposited platinum electrodes. J. Electroanal. Chem. 1992, 340, 214–255. [Google Scholar] [CrossRef]
- Mello, G.; Cheuquepan, W.; Briega-Martos, V.; Feliu, J. Glucose electro-oxidation on Pt (100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochim. Acta 2020, 354, 136765. [Google Scholar] [CrossRef]
- Vassilyev, Y.; Khazove, O.; Nikolaeva, N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J. Electroanal. Chem. Interfacial Electrochem. 1985, 196, 127–144. [Google Scholar] [CrossRef]
- Pasta, M.; La Manita, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568. [Google Scholar] [CrossRef]
- Kurniawan, F.; Tsakova, V.; Mirsky, V.M. Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 2006, 18, 1937–1942. [Google Scholar] [CrossRef]
- Zhi, Z.; Garcia-Gancedo, L.; Flewitt, A.; Xie, H.; Moussy, F.; Milne, W. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors 2012, 12, 5996–6022. [Google Scholar] [CrossRef] [PubMed]
- Mikeska, R.; Wacker, R.; Arni, R.; Singh, T.P.; Mikhailov, A.; Gabdoulkhakov, A.; Voelter, W.; Betzel, C. Mistletoe lecithin I in complex with galactose and lactose reveals distinct sugar-binding properties. Acta Crystallogr. F. 2005, 61, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.; James, T. Carbohydrate receptors. In Functional Synthetic Receptors; Schrader, T., Hamilton, A., Eds.; Wiley-VCH: Weinheim, Germany, 2005; ISBN 978-3-527-30655-8. [Google Scholar]
- Williams, G.; Kedge, J.; Fossey, J. Molecular boronic acid-based saccharide sensors. ACS Sens. 2021, 6, 1508–1528. [Google Scholar] [CrossRef]
- Mader, H.; Wolfbeis, O.S. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules: A review. Microchim. Acta 2008, 162, 1–34. [Google Scholar] [CrossRef]
- Babcock, L.; Pizer, R. Dynamics of boronic acid complexation reactions. Formation of 1:1 boron acid-ligand complexes. Inorg. Chem. 1980, 19, 56–61. [Google Scholar] [CrossRef]
- James, T. Boronic acid-based receptors and sensors for saccharides. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Dennis, H., Ed.; Wiley-VCH Verlag GmbH & Co.; KGaA: Weinheim, Germany, 2011; pp. 169–189. ISBN 978-3-527-60682-5. [Google Scholar]
- Yang, X.; Cheng, Y.; Jin, S.; Wang, B. Boronic acid-based receptors and chemosensors. In Artificial Receptors for Chemical Sensors; Mirsky, V.M., Yatsmimirsly, A., Eds.; Wiley-VCH Verlag GmbH & Co.; KGaA: Weinheim, Germany, 2011; pp. 169–189. ISBN 978-3-527-32357-9. [Google Scholar]
- Woolley, E.; Tomkins, J.; Hepler, L. Ionization constants for very weak organic acids in aqueous solution and apparent ionization constants for water in aqueous organic mixtures. J. Solut. Chem. 1972, 1, 341–351. [Google Scholar] [CrossRef]
- Yan, J.; Springsteen, G.; Deeter, S.; Wang, B. The relationship among pKa, pH and binding constants in the interactions between boronic acids and diols—It is not as simple as appears. Tetrahedron 2004, 60, 11205–11209. [Google Scholar] [CrossRef]
- Bosch, L.; Fyles, T.; James, T. Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases. Tetrahedron 2004, 60, 11175–11190. [Google Scholar] [CrossRef]
- Shoji, E.; Freund, M. Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): A nonenzymatic glucose sensor. J. Am. Chem. Soc. 2001, 123, 3383–3384. [Google Scholar] [CrossRef]
- Shoji, E.; Freund, M. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc. 2002, 124, 12486–12493. [Google Scholar] [CrossRef]
- Aytaç, S.; Kuralay, F.; Boyaci, I.; Unaleroglu, C. A novel polypyrrole-phenylboronic acid based electrochemical saccharide sensor. Sens. Actuators 2011, 160, 405–411. [Google Scholar] [CrossRef]
- Çiftçi, H.; Tamer, U.; Teker, M.; Pekmez, N. An enzyme free potentiometric detection of glucose based on conducting polymer poly (3-aminophenyl boronic acid-co-3-octylthiphene). Electrochim. Acta 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Pringsheim, E.; Terperschnig, E.; Peletsky, S.; Wolfbeis, O.S. A polyaniline with near-infrared optical response to saccharides. Adv. Mater. 1999, 11, 865–868. [Google Scholar] [CrossRef]
- Shishkanova, T.; Fitl, P.; Kral, V.; Barek, J. Nanoparticles fuctionalized with phenylboronic acid for the potentiometric detection of saccharides. J. Electroanal. Chem. 2016, 761, 106–111. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. Poly-3-thienylboronic acid: A chemosensitive derivative of polythiophene. J. Solid State Electr. 2020, 24, 3105–3111. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. 3-Thienylboronic acid as a receptor for diol-containing compounds: A study by isothermal titration calorimetry. Chemosensors 2022, 10, 251. [Google Scholar] [CrossRef]
- Lange, U.; Mirsky, V.M. Integrated electrochemical transistor as a fast-recoverable gas sensor. Anal. Chim. Acta 2011, 687, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, Y.; Mirsky, V.M. Electrically controlled variation of receptor affinity. Anal. Bioanal. Chem. 2016, 408, 7283–7287. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, Y.; Mirsky, V.M. Virtual sensor array consisting of a single sensor element with variable affinity: An application for analysis of fish freshness. Sens. Actuators B 2017, 241, 652–657. [Google Scholar] [CrossRef]
- Hao, Q.; Kulikov, V.; Mirsky, V.M. Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sens. Actuators B 2003, 94, 352–357. [Google Scholar] [CrossRef]
- Kang, H.; Xu, L.; Cai, Y.; Liu, Y.; Jiang, F.; Xu, G.; Zhou, W. Using boronic acid functionalization simultaneously enhance electrical conductivity and thermoelectric performance of free-standing polythiophene film. Eur. Pol. J. 2021, 144, 110208. [Google Scholar] [CrossRef]
- Kolosova, O.; Efremenko, Y.; Laurinavichyute, V.; Nizamov, S.; Petruschenko, S.; Mirsky, V.M. Poly-3-thienylboronic acid nanoparticles: Synthesis, characterization and interaction with saccharides studied at the level of individual nanoparticles. ACN Nano 2024, 7, 11120–11135. [Google Scholar] [CrossRef]
- Sabatani, E.; Gafni, Y.; Rubinstein, I. Morphology control in electrochemically grown conducting polymer films. A comparative study of polyaniline films on bare gold and on gold pretreated with p-aminothiophenol. J. Phys. Chem. 1995, 99, 12305–12311. [Google Scholar] [CrossRef]
- Lange, U.; Mirsky, V.M. Polythiophene films on gold electrodes: A comparison of bulk and contact resistances in aqueous and organic media. J. Solid State Electr. 2011, 15, 2377–2382. [Google Scholar] [CrossRef]
- Lange, U.; Mirsky, V.M. Chemoresistors based on conducting polymers: A review on measurement techniques. Anal. Chem. Acta 2011, 687, 105–113. [Google Scholar] [CrossRef]
- Springsteen, G.; Wang, B. A detailed examination of boronic-diol complexation. Tetrahedron 2002, 58, 5291–5300. [Google Scholar] [CrossRef]
- Lorand, J.P.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem. 1959, 24, 769–774. [Google Scholar] [CrossRef]
- Van den Berg, R.; Peters, J.; Van Bekkum, H. The structure and (local) stability constants of borate esters of mono- and di-saccharides as studied by 11B and 13C NMR spectroscopy. Carbohyd. Res. 1994, 253, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, P.A.; Roberts, D.C. Chemical affinity systems—I: pH dependence of boronic acid-diol affinity in aqueous solution. J. Inorg. Nucl. Chem. 1980, 42, 1559–1575. [Google Scholar] [CrossRef]
- Van Duin, M.; Peters, J.A.; Kieboom, A.P.G.; Van Bekkum, H. Studies on boronate esters 1: The pH dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11 B NMR. Tetrahedron 1984, 40, 2901–2911. [Google Scholar] [CrossRef]
- Ni, N.; Laughlin, S.; Wang, Y.; Feng, Y.; Yheng, Y.; Wang, B. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH. Bioorg. Med. Chem. 2012, 20, 2957–2961. [Google Scholar] [CrossRef]
- Trupp, S.; Schweitzer, A.; Mohr, G. Fluororeactands for the detection of saccharides based on hemocyanin dyes with a boronic acid receptor. Microchim. Acta 2006, 153, 127–131. [Google Scholar] [CrossRef]
- Watkins, N.; Neglia-Fisher, C.; Dyer, D.; Thorpe, S.; Baynes, J. Effect of phosphate on the kinetics and specificity of glycation of protein. J. Biol. Chem. 1987, 262, 7207–7212. [Google Scholar] [CrossRef]
- Gutthrow, C.; Morris, M.; Day, J.; Thorpe, S.; Baynes, J. Enhanced nonenzymatic glycosylation of human serum albumin in diabetes mellitus. Proc. Natl. Acad. Sci. USA 1979, 76, 4258–4261. [Google Scholar] [CrossRef]
- Watkins, N.; Thorpe, S.; Baynes, J. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. J. Biol. Chem. 1985, 260, 10629–10636. [Google Scholar] [CrossRef]
- Neelofar, K.; Ahmad, J.; Alam, K. Impact in vitro non-enzymatic glycation on biophysical and biochemical regimes of human serum albumin: Relevance in diabetes associated complications. RSC Adv. 2015, 5, 63605–63614. [Google Scholar] [CrossRef]
- Iberg, N.; Flückiger, R. Non-enzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J. Biol. Chem. 1986, 261, 13542–13545. [Google Scholar] [CrossRef]
- Bourdon, E.; Loreau, N.; Blache, D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J. 1999, 13, 233–244. [Google Scholar] [CrossRef]
- Jindal, A.; Vasudevan, S. Conformation of ethylene glycol in the liquid state: Intra- versus intermolecular interactions. J. Phys. Chem. 2017, 121, 5595–5600. [Google Scholar] [CrossRef]
- Fernández, d.A.B.; Watkins, H.; Pingarrón, J.; Plaxo, K.; Palleschi, G.; Ricci, F. Determinants of the detection limit and specificity of surface-based biosensors. Anal. Chem. 2013, 85, 6593–6597. [Google Scholar]
- Simon, A.; Valee-Besisle, A.; Ricci, F.; Watkins, H.; Plaxco, W.K. Using the population-shift mechanism to rationally introduce “Hill-type” cooperativity into a normally non-cooperative receptor. Angew. Chem. 2014, 53, 9471–9475. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, B. Compendium of Terminology in Analytical Chemistry, IUPAC Orange Book Analytical Nomenclature (Orange Book), 4th ed.; The Royal of Chemistry: Oxford, UK, 2023; p. 666. ISBN 978-1-78262-947-4. [Google Scholar] [CrossRef]
- Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Panasyuk, T.; Mirsky, V.M.; Piletsky, S.; Wolfbeis, O.S. Electropolymerized moleculary imprinted polymers as receptor layers in capacitive chemical sensors. Anal. Chem. 1999, 71, 4609–4613. [Google Scholar] [CrossRef]
- Granot, E.; Tel-Vered, R.; Liobashevski, O.; Willner, I. Stereoselective and enantioselective electrochemical sensing of monosaccharides using imprinted boronic acid-functionalized polyphenol films. Adv. Funct. Mater. 2008, 18, 478–484. [Google Scholar] [CrossRef]
- Iskierko, Z.; Checinsky, A.; Sharma, P.; Kutner, W. Molecularly imprinted polymer based extended-gate field-effect transistor chemosensor for phenylalanine enantioselective sensing. J. Mater. Chem. 2017, 5, 969–977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremenko, Y.; Mirsky, V.M. Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control. Polymers 2024, 16, 1938. https://doi.org/10.3390/polym16131938
Efremenko Y, Mirsky VM. Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control. Polymers. 2024; 16(13):1938. https://doi.org/10.3390/polym16131938
Chicago/Turabian StyleEfremenko, Yulia, and Vladimir M. Mirsky. 2024. "Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control" Polymers 16, no. 13: 1938. https://doi.org/10.3390/polym16131938
APA StyleEfremenko, Y., & Mirsky, V. M. (2024). Chemosensitive Properties of Electrochemically Synthesized Poly-3-Thienylboronic Acid: Conductometric Detection of Glucose and Other Diol-Containing Compounds under Electrical Affinity Control. Polymers, 16(13), 1938. https://doi.org/10.3390/polym16131938