Catalytic Pyrolysis of Polypropylene for Cable Semiconductive Buffer Layers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Device Setup
3. Results and Discussion
3.1. Morphology of Catalyst
3.2. Mass Spectra of Volatile Products from Polypropylene Pyrolysis
3.3. The Intensity of the Main Pyrolysis Products versus Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Su, C.Q. Failure analysis of three 230kV XLPE cables. In Proceedings of the 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), Sao Paulo, Brazil, 8–10 November 2010; pp. 22–25. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, K.; Kong, J.; Akram, S.; Ren, X.; Zhang, X.; Li, Y.; Zhao, Q. Hydrogen evolution and electromigration in the corrosion of aluminium metal sheath inside high-voltage cables. High Volt. 2022, 7, 260–268. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, K.; Kong, J.; Zhao, Q.; Li, Y.; Xu, X.; Song, P. A Review of Failure Analysis and Detection Methods for Buffer Layers in High-Voltage Cables. IEEE Electr. Insul. Mag. 2023, 39, 7–15. [Google Scholar] [CrossRef]
- Densley, R.J. An investigation into the growth of electrical trees in XLPE cable insulation. IEEE Trans. Electr. Insul. 1979, EI-14, 148–158. [Google Scholar] [CrossRef]
- Koch, B.; Carpentier, Y. Manhole explosions due to arcing faults on underground secondary distribution cables in ducts. IEEE Trans. Power Deliv. 1992, 7, 1425–1433. [Google Scholar] [CrossRef]
- Kruizinga, B. Low Voltage Underground Power Cable Systems: Degradation Mechanisms and the Path to Diagnostics. Ph.D. Thesis, Eindhoven University, Eindhoven, The Netherlands, 2017. [Google Scholar]
- Mo, S.-J.; Zhang, J.; Liang, D.; Chen, H.-Y. Study on pyrolysis characteristics of cross-linked polyethylene material cable. Procedia Eng. 2013, 52, 588–592. [Google Scholar] [CrossRef]
- Kong, J.; Zhou, K.; Chen, Y.; Meng, P.; Li, Y.; Ren, X. A Novel Condition Assessment Method for Corrugated Aluminum Sheathed XLPE Cables Based on Evolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2022, 30, 883–891. [Google Scholar] [CrossRef]
- Du, B.; Han, C.; Li, Z.; Li, J. Improved DC conductivity and space charge characteristics of XLPE for HVDC cable application: Effect of voltage stabilizers. IEEE Access 2019, 7, 66576–66583. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Han, Z.; Xie, Y.; Fan, X.; Nie, Y.; Wang, P.; Liu, G.; Hao, Y.; Huang, J. Correlation between thermal parameters and morphology of cross-linked polyethylene. IEEE Access 2020, 8, 19726–19736. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Yen, H.-Y. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polym. Degrad. Stab. 2005, 89, 101–108. [Google Scholar] [CrossRef]
- Mihalcik, D.J.; Mullen, C.A.; Boateng, A.A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis 2011, 92, 224–232. [Google Scholar] [CrossRef]
- Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D.Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel 2008, 87, 2493–2501. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catal. Today 2011, 171, 1–13. [Google Scholar] [CrossRef]
- Saha, B.; Reddy, P.K.; Chowlu, A.C.K.; Ghoshal, A. Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP). Thermochim. Acta 2008, 468, 94–100. [Google Scholar] [CrossRef]
- Santos, B.P.S.; Almeida, D.D.; Marques, M.d.F.V.; Henriques, C.A. Degradation of Polypropylene and Polyethylene Wastes Over HZSM-5 and USY Zeolites. Catal. Lett. 2019, 149, 798–812. [Google Scholar] [CrossRef]
- Shayapat, J.; Chung, O.H.; Park, J.S. Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 2015, 170, 110–121. [Google Scholar] [CrossRef]
- Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laruelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2012, 5, 5271–5280. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltrán, M.; Hernández, F.; Navarro, R. HZSM5 and HUSY deactivation during the catalytic pyrolysis of polyethylene. Appl. Catal. A Gen. 2004, 278, 37–43. [Google Scholar] [CrossRef]
- Song, P.; Meng, Z.; Li, X.; Zhu, M.; Yu, Y.; Fang, S. A case study on ablation breakdown of high voltage cable buffer layer. In Proceedings of the 2020 IEEE International Conference of High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, C.; Wei, R.; Wang, J. Experimental study of polyethylene pyrolysis and combustion over HZSM-5, HUSY, and MCM-41. J. Hazard. Mater. 2017, 333, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Park, Y.-K.; Siddiqui, M.Z.; Kang, Y.; Watanabe, A.; Lee, H.W.; Jeong, S.J.; Kim, S.; Kim, Y.-M. Increased Aromatics Formation by the Use of High-Density Polyethylene on the Catalytic Pyrolysis of Mandarin Peel over HY and HZSM-5. Catalysts 2018, 8, 656. [Google Scholar] [CrossRef]
- Li, X.; Dong, L.; Zhang, J.; Hu, C.; Zhang, X.; Cai, Y.; Shao, S. In-situ catalytic upgrading of biomass-derived vapors using HZSM-5 and MCM-41: Effects of mixing ratios on bio-oil preparation. J. Energy Inst. 2019, 92, 136–143. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, H.; Wu, S.; Xiao, R. Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size. Energy Convers. Manag. 2020, 210, 112678. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, S.; He, J.; Xu, D.; Abdou, S.N.; Ibrahim, M.M.; Sun, S.; Chen, Y.; Li, H.; Bin Xu, B.; et al. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system. J. Mater. Sci. Technol. 2023, 169, 124–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, H.; Li, C.; Zhou, J. Enhancing safety, sustainability, and economics in mining through innovative pillar design:a state-of-the-art review. J. Saf. Sustain. 2023, 1, 53–73. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, M.; Wei, Y.; Zhang, J.; Xie, F.; Jin, X. Influence of automation level of human-machine system on operators’ mental load. J. Saf. Sustain. 2023, 1, 42–52. [Google Scholar] [CrossRef]
- Benin, A.K.; Akuinor, B.T.; Khandelwal, M. Estimating, appraising and establishing blast exclusive zone at Huni Pit—A case study. J. Saf. Sustain. 2024, in press. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, H.; Tian, J.; He, H.; Ji, Z.; He, X. Research on quantitative identification method for wire rope wire breakage damages signals based on multi-decomposition information fusion. J. Saf. Sustain. 2024, in press. [Google Scholar] [CrossRef]
- Sultana, A.; Fujitani, T. Conversion of levulinic acid to BTX over different zeolite catalysts. Catal. Commun. 2017, 88, 26–29. [Google Scholar] [CrossRef]
- Qin, J.; Liu, C.; Huang, Q. Simulation on fire emergency evacuation in special subway station based on Pathfinder. Case Stud. Therm. Eng. 2020, 21, 100677. [Google Scholar] [CrossRef]
- Xu, D.; Huang, G.; Guo, L.; Chen, Y.; Ding, C.; Liu, C. Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv. Compos. Hybrid Mater. 2022, 5, 113–129. [Google Scholar] [CrossRef]
Name | Manufacturer | Parameter |
---|---|---|
PP | Shanghai Liyang Machinery and Electric Co. Ltd. (Shanghai, China) | ρ = 0.91 g/cm3 Melting point = 161 °C Pore size < 180 μm |
HZSM-5 | Nankai University Catalyst Co. Ltd. (Tianjin, China) | Si/Al = 36 Surface area = 320 m2/g Pore size = 0.55 nm |
MW | Formula | Product | Molecular Formula | Volume Fraction at 400 °C (%) |
---|---|---|---|---|
28 | C2H4 | ethylene | 0.09 | |
40 | C3H4 | allene | 0.08 | |
42 | C3H6 | propylene | 13.44 | |
54 | C4H6 | 1,3-butadiene | 0.14 | |
56 | C4H8 | 2-methyl-1-propene | 7.19 | |
68 | C5H8 | pentadiene | 8.26 | |
70 | C5H10 | 2-pentene | 9.22 | |
78 | C6H6 | benzene | 0.27 | |
82 | C6H10 | hexadiene | 5.30 | |
84 | C6H12 | 2-methyl-1-pentene 4-methyl-1-pentene | 19.95 | |
92 | C7H8 | toluene | 0.26 | |
104 | C8H8 | styrene | 0.06 | |
106 | C8H10 | xylene | 0.13 | |
112 | C8H16 | 4-methyl-2-heptene | 6.20 | |
126 | C9H18 | 2,4-dimethyl-1-heptene 4,6-dimethyl-2-heptene | 27.63 | |
140 | C10H12 | 2,4,6-trimethyl-1-heptene | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Yu, H.; Lu, Z.; Jin, T. Catalytic Pyrolysis of Polypropylene for Cable Semiconductive Buffer Layers. Polymers 2024, 16, 1435. https://doi.org/10.3390/polym16101435
Meng X, Yu H, Lu Z, Jin T. Catalytic Pyrolysis of Polypropylene for Cable Semiconductive Buffer Layers. Polymers. 2024; 16(10):1435. https://doi.org/10.3390/polym16101435
Chicago/Turabian StyleMeng, Xiaokai, Hua Yu, Zhumao Lu, and Tao Jin. 2024. "Catalytic Pyrolysis of Polypropylene for Cable Semiconductive Buffer Layers" Polymers 16, no. 10: 1435. https://doi.org/10.3390/polym16101435
APA StyleMeng, X., Yu, H., Lu, Z., & Jin, T. (2024). Catalytic Pyrolysis of Polypropylene for Cable Semiconductive Buffer Layers. Polymers, 16(10), 1435. https://doi.org/10.3390/polym16101435