Development of an Innovative Lightweight Composite Material with Thermal Insulation Properties Based on Cardoon and Polyurethane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polyurethane–Cardoon (PU-CP) Composite Panels
2.3. Characterization Techniques
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Fourier-Transformed Infrared (FTIR) Spectroscopy
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Physical–Mechanical Evaluation
2.3.5. Moisture Resistance Tests
2.3.6. Thermal Conductivity Measurements
2.3.7. Formaldehyde and Volatile Organic Compounds (VOCs) Emissions
2.3.8. Susceptibility to Biological Degradation
3. Results and Discussion
3.1. Characterization of Raw Materials and PUx-CPy Composite Panels
3.2. Optimization of PUx-CPy Formulation
3.3. Insulation Properties
3.4. Moisture Resistance
3.5. Formaldehyde and Volatile Organic Compounds (VOCs) Emissions
3.6. Susceptibility to Biological Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandanayake, M.S. Environmental Impacts of Construction in Building Industry—A Review of Knowledge Advances, Gaps and Future Directions. Knowledge 2022, 2, 139–156. [Google Scholar] [CrossRef]
- Dräger, P.; Letmathe, P. Value losses and environmental impacts in the construction industry—Tradeoffs or correlates? J. Clean. Prod. 2022, 336, 130435. [Google Scholar] [CrossRef]
- Anh, L.D.H.; Pásztory, Z. An overview of factors influencing thermal conductivity of building insulation materials. J. Build. Eng. 2021, 44, 102604. [Google Scholar]
- European Commission. Key Proposals for Homes and Buildings: Making Our Homes and Buildings Fit for a Greener Future; European Commission: Luxembourg, 2021. [Google Scholar]
- Ulutaş, A.; Balo, F.; Topal, A. Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model. Polymers 2023, 15, 1500. [Google Scholar] [CrossRef] [PubMed]
- Ducoulombier, L.; Lafhaj, Z. Comparative study of hygrothermal properties of five thermal insulation materials. Case Stud. Therm. Eng. 2017, 10, 628–640. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Florea, I.; Manea, D.L. Analysis of Thermal Insulation Building Materials Based on Natural Fibers. Procedia Manuf. 2019, 32, 230–235. [Google Scholar] [CrossRef]
- Bozsaky, D. Nature-Based Thermal Insulation Materials from Renewable Resources—A State-Of-The-Art Review. Slovak J. Civ. Eng. 2019, 27, 52–59. [Google Scholar] [CrossRef]
- Bellel, N.; Bellel, N. Sustainable heat insulation composites based on Portland cement reinforced with date palm fibers. J. Eng. Fiber. Fabr. 2023, 18, 155892502311577. [Google Scholar] [CrossRef]
- Belhous, M.; Boumhaout, M.; Oukach, S.; Hamdi, H. Effect of a Material Based on Date Palm Fibers on the Thermal Behavior of a Residential Building in the Atlantic Climate of Morocco. Sustainability 2023, 15, 6314. [Google Scholar] [CrossRef]
- Bakatovich, A.; Gaspar, F. Composite material for thermal insulation based on moss raw material. Constr. Build. Mater. 2019, 228, 116699. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Haque, M.A.; Ali Shah, S.F. Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties. J. Clean. Prod. 2019, 229, 128–143. [Google Scholar] [CrossRef]
- Parlato, M.C.M.; Valenti, F.; Lanza, E.; Porto, S.M.C. Spatial analysis to quantify and localise the residual cardoon stem fibres as potential bio-reinforcements for building materials. Int. J. Sustain. Eng. 2022, 15, 59–70. [Google Scholar] [CrossRef]
- Barracosa, P.; Barracosa, M.; Pires, E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem. Biodivers. 2019, 16, e1900498. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Pereira, J.; Ferra, J.; Magalhães, F.D.; Martins, J.M.; Carvalho, L.H. New Cardoon (Cynara cardunculus L.) Particleboards Using Cardoon Leaf Extract and Citric Acid as Bio-adhesive. Mater. Circ. Econ. 2021, 3, 14. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Castanheira, I.; Fernando, A.L.; Loizzo, M.R.; Silva, A.S. A new insight on cardoon: Exploring new uses besides cheese making with a view to zero waste. Foods 2020, 9, 564. [Google Scholar] [CrossRef]
- Monteiro, S.; Nunes, L.; Martins, J.; Magalhães, F.D.; Carvalho, L. Low-density cardoon (Cynara cardunculus L.) particleboards bound with potato starch-based adhesive. Polymers 2020, 12, 1799. [Google Scholar] [CrossRef]
- Monteiro, S.; Martins, J.; Magalhães, F.D.; Carvalho, L. Low density wood-based particleboards bonded with foamable sour cassava starch: Preliminary studies. Polymers 2016, 8, 354. [Google Scholar] [CrossRef]
- EN 312; Lightweight Particleboards-Specifications. Comite Europeen de Normalisation: Brussels, Belgium, 2014.
- EN 323; Wood-Based Panels–Determination of Density. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 322; Wood-Based Panels-Determination of Moisture Content. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fibreboards-Determination of Tensile Strength Perpendicular to the Plane of the Board. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fibreboards-Determination of Swelling in Thickness after Immersion in Water. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 318; Fibreboards-Determination of Dimensional Changes Associated with Changes in Relative Humidity. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 321; Fibreboards. Cyclic Tests in Humid Conditions. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- EN 1087-1; Particleboards-Determination of Moisture Resistance-Part 1: Boil Test. Comite Europeen de Normalisation: Brussels, Belgium, 1995.
- EN 12667; Thermal Performance of Building Materials and Products-Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods-Products of High and Medium Thermal Resistance. Comite Europeen de Normalisation: Brussels, Belgium, 2001.
- EN ISO 12460-3; Wood-Based Panels-Determination of Formaldehyde Release-Part 3: Gas Analysis Method. Comite Europeen de Normalisation: Brussels, Belgium, 2023.
- ISO 16000-9; Indoor Air-Part 9: Determination of the Emission of Volatile Organic Compounds from Building Products and Furnishing Emission Test Chamber Method. Comite Europeen de Normalisation: Brussels, Belgium, 2006.
- EN 117; Wood Preservatives-Determination of Toxic Values Against Reticulitermes Species (European Termites) (Laboratory Method). Comite Europeen de Normalisation: Brussels, Belgium, 2012.
- Verma, P.; Dyckmans, J.; Militz, H.; Mai, C. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Appl. Microbiol. Biotechnol. 2008, 80, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, A.; Kosmela, P.; Piszczyk, Ł. Synthesis and characterization of biopolyols through biomass liquefaction of wood shavings and their application in the preparation of polyurethane wood composites. Eur. J. Wood Wood Prod. 2022, 80, 57–74. [Google Scholar] [CrossRef]
- De Souza, F.M.; Kahol, P.K.; Gupta, R.K. Introduction to Polyurethane Chemistry. In Polyurethane Chem. Renew. Polyols Isocyanates; American Chemical Society: Washington, DC, USA, 2021; pp. 1–24. [Google Scholar]
- Reignier, J.; Alcouffe, P.; Méchin, F.; Fenouillot, F. The morphology of rigid polyurethane foam matrix and its evolution with time during foaming—New insight by cryogenic scanning electron microscopy. J. Colloid Interface Sci. 2019, 552, 153. [Google Scholar] [CrossRef] [PubMed]
- Sharmin, E.; Zafar, F. Polyurethane: An Introduction. In Polyurethane; IntechOpen Limited: London, UK, 2012. [Google Scholar]
- Crescentini, T.M.; May, J.C.; McLean, J.A.; Hercules, D.M. Mass spectrometry of polyurethanes. Polymer 2019, 181, 121624. [Google Scholar] [CrossRef] [PubMed]
- Pongmuksuwan, P.; Harnnarongchai, W. Synthesis and characterization of soft polyurethane for pressure ulcer prevention. Polym. Test. 2022, 112, 107634. [Google Scholar] [CrossRef]
- Masturi, W.N.; Jannah, R.M.; Maulana, T.; Darsono, T.; Sunarno, S. Rustad, Mechanical and physical properties of teak leaves waste/polyurethane composites for particleboard application. Adv. Compos. Lett. 2020, 29, 2633366X2096250. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Kairytė, A. Effect of walnut shells and silanized walnut shells on the mechanical and thermal properties of rigid polyurethane foams. Polym. Test. 2020, 87, 106534. [Google Scholar] [CrossRef]
- Chen, Y.C.; Tai, W. Castor oil-based polyurethane resin for low-density composites with bamboo charcoal. Polymers 2018, 10, 1100. [Google Scholar] [CrossRef]
- Džunuzović, J.V.; Pergal, M.V.; Jovanović, S.; Vodnik, V.V. Synthesis and swelling behavior of polyurethane networks based onhyperbranched polymer. Hem. Ind. 2011, 65, 637–644. [Google Scholar] [CrossRef]
- Fornasieri, M.; Alves, J.W.; Muniz, E.C.; Ruvolo-Filho, A.; Otaguro, H.; Rubira, A.F.; De Carvalho, G.M. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Compos. Part A Appl. Sci. Manuf. 2011, 42, 189–195. [Google Scholar] [CrossRef]
- Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. J. Mater. Res. Technol. 2019, 8, 3988–3994. [Google Scholar] [CrossRef]
- Zhao, S.; Pang, H.; Li, Z.; Wang, Z.; Kang, H.; Zhang, W.; Zhang, S.; Li, J.; Li, L. Polyurethane as high-functionality crosslinker for constructing thermally driven dual-crosslinking plant protein adhesion system with integrated strength and ductility. Chem. Eng. J. 2021, 422, 130152. [Google Scholar] [CrossRef]
- Bartczak, P.; Stachowiak, J.; Szmitko, M.; Grząbka-Zasadzińska, A.; Borysiak, S. Multifunctional Polyurethane Composites with Coffee Grounds and Wood Sawdust. Materials 2023, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Gloc, M.; Kulesza, M.; Kowalski, M.; Krauze, S.; Lewandowska, M. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials. Compos. Struct. 2016, 140, 67–76. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Bairagi, S.; Kumar Ghosh, S.; Bhattacharyya, R.; Mohan Mondal, M. Study on Potential Application of Natural Fibre Made Fabrics as Thermal Insulation Medium. Am. Int. J. Res. Sci. 2016, 16, 203. [Google Scholar]
- Choi, H.-J.; Ahn, H.; Choi, G.-S.; Kang, J.-S.; Huh, J.-H. Analysis of Long-Term Change in the Thermal Resistance of Extruded Insulation Materials through Accelerated Tests. Appl. Sci. 2021, 11, 9354. [Google Scholar] [CrossRef]
- Bae, M.; Ahn, H.; Kang, J.; Choi, G.; Choi, H. Determination of the Long-Term Thermal Performance of Foam Insulation Materials through Heat and Slicing Acceleration. Polymers 2022, 14, 4926. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, B.; Cremaschi, L. Moisture behavior of polystyrene insulation in below-grade application. Energy Build. 2018, 159, 24–38. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, D.; Zhang, H.; Wang, K.; Ye, X.; Chen, Z.; Zhang, J. Study on the Properties of Rock Wool for External Thermal Insulation of Buildings under the Soaking and Hot & Humid. J. Phys. Conf. Ser. 2020, 1622, 012006. [Google Scholar]
- Huang, S.; Song, S.; Nielsen, C.P.; Zhang, Y.; Xiong, J.; Weschler, L.B.; Xie, S.; Li, J. Residential building materials: An important source of ambient formaldehyde in mainland China. Environ. Int. 2022, 158, 106909. [Google Scholar] [CrossRef]
- Wi, S.; Kim, M.G.; Myung, S.W.; Baik, Y.K.; Lee, K.B.; Song, H.S.; Kwak, M.J.; Kim, S. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study. J. Hazard. Mater. 2020, 393, 122381. [Google Scholar] [CrossRef]
- EN 13986:2004+A1; Wood-Based Panels for Use in Construction-Characteristics, Evaluation of Conformity and Marking. Comite Europeen de Normalisation: Brussels, Belgium, 2015.
- EMICODE® Classification. Available online: https://www.emicode.com/en/emission-classes/ (accessed on 28 September 2023).
Composite | Cardoon Mass (g) | Polyol Mass (g) | MDI Mass (g) | Isocyanate Index |
---|---|---|---|---|
PU75_CP25 | 2062.5 | 1221.4 | 916.1 | 105 |
PU75_CP35 | 2887.5 | 1221.4 | 916.1 | 105 |
PU75_CP45 | 3712.5 | 1221.4 | 916.1 | 105 |
PU75_CP55 | 4537.5 | 1221.4 | 916.1 | 105 |
PU75_CP65 | 5362.5 | 1221.4 | 916.1 | 105 |
PU50_CP45 | 3712.5 | 2525.0 | 1262.5 | 70 |
PU100_CP45 | 3712.5 | 1893.8 | 1893.8 | 140 |
PU125_CP45 | 3712.5 | 1683.3 | 2104.2 | 175 |
Material | t (mm) | λ10 °C (W m−1 K−1) | λ20 °C (W m−1 K−1) | λ30 °C (W m−1 K−1) |
---|---|---|---|---|
Plasterboard | 15 | 0.15284 | 0.15349 | 0.15441 |
OSB | 22 | 0.0984 | 0.1006 | 0.10295 |
PU75-CP45 | 40 | 0.06858 | 0.07041 | 0.07608 |
Expanded polystyrene (EPS) | 30 | 0.03642 | 0.03784 | 0.03924 |
Rockwool | 50 | 0.03357 | 0.03483 | 0.03636 |
Conditions | Change in Thickness (%) | Change in Length (mm m−1) |
---|---|---|
From 65 to 30% of RH | −0.7 ± 0.3 | −2.7 ± 0.3 |
From 65 to 85% of RH | 1.1 ± 0.1 | 3.1 ± 0.2 |
Test | Thickness Swelling, TS (%) | Internal Bond Strength, IB (MPa) |
---|---|---|
Cyclic test | 2.4 ± 0.1 | 0.10 ± 0.03 |
Boiling test | 3.6 ± 0.2 | 0.10 ± 0.02 |
Test | Value | Classification |
---|---|---|
Formaldehyde emission | (0.37 ± 0.01) mg m−2 h−1 | E1 (1) |
VOCs emission | <5.0 µg of toluene eq. m−3 | EC1PLUS (2) |
Material | Moisture Content (%) | Survival (%) | Mass Loss (%) | Grade of Attack |
---|---|---|---|---|
PU75-CP45 | 21.5 ± 13.1 | 19.9 ± 23.6 | 6.5 ± 4.0 | 4 |
Fagus sylvatica L. | 26.3 ± 17.7 | 72.9 ± 17.5 | 24.8 ± 3.7 | 4 |
Material | Moisture Content (%) | Mass Loss (%) |
---|---|---|
PU75-CP45 | 114.2 ± 24.8 | 11.9 ± 1.5 |
Fagus sylvatica L. | 78.2 ± 47.0 | 41.3 ± 8.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, R.A.; Ferreira, N.; Lopes, S.; Santos, J.; Bento Pereira, N.; Ferreira, N.O.; Nunes, L.; Martins, J.M.; Carvalho, L.H. Development of an Innovative Lightweight Composite Material with Thermal Insulation Properties Based on Cardoon and Polyurethane. Polymers 2024, 16, 137. https://doi.org/10.3390/polym16010137
Fernandes RA, Ferreira N, Lopes S, Santos J, Bento Pereira N, Ferreira NO, Nunes L, Martins JM, Carvalho LH. Development of an Innovative Lightweight Composite Material with Thermal Insulation Properties Based on Cardoon and Polyurethane. Polymers. 2024; 16(1):137. https://doi.org/10.3390/polym16010137
Chicago/Turabian StyleFernandes, Raquel A., Nuno Ferreira, Sandro Lopes, Jorge Santos, Nelson Bento Pereira, Nuno Oliveira Ferreira, Lina Nunes, Jorge M. Martins, and Luisa H. Carvalho. 2024. "Development of an Innovative Lightweight Composite Material with Thermal Insulation Properties Based on Cardoon and Polyurethane" Polymers 16, no. 1: 137. https://doi.org/10.3390/polym16010137
APA StyleFernandes, R. A., Ferreira, N., Lopes, S., Santos, J., Bento Pereira, N., Ferreira, N. O., Nunes, L., Martins, J. M., & Carvalho, L. H. (2024). Development of an Innovative Lightweight Composite Material with Thermal Insulation Properties Based on Cardoon and Polyurethane. Polymers, 16(1), 137. https://doi.org/10.3390/polym16010137