New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. From Linear Polymers in Thermodynamically Good Solvent through Marginal One and θ-Solvent to Amphiphilic Graft Copolymers
3.1.1. Hydrophylic Flexible Noncharged Nonassociating Poly-N-Methyl-N-Vinylacetamide (PMVA)
3.1.2. Peculiarities of Viscosity Behavior of Associating Systems
3.2. Viscometric Data at Different Ionic Strengths of Solutions
3.2.1. Sodium Poly(Styrene-4-Sulfonate)
3.2.2. Alkylated Random Copolymers of N-Methyl-N-Vinylacetamide and N-Methyl-N-Vinylamine (MVAA-co-MVACnH2n+1)
3.2.3. The Behaviour of Polymers in Salt-Free Solutions
3.3. Normalized Scaling Relationships: Comparison of Viscometric Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winnik, M.A.; Yekta, A. Associative polymers in aqueous solution. Curr. Opin. Colloid Interface Sci. 1997, 2, 424–436. [Google Scholar] [CrossRef]
- Hamley, I.W. Block Copolymers in Solution: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Liu, K.; Kang, Y.; Wang, Z.; Zhang, X. 25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: “Noncovalent Interaction” Matters. Adv. Mater. 2013, 25, 5530–5548. [Google Scholar] [CrossRef]
- Krieg, E.; Bastings, M.M.; Besenius, P.; Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 2016, 116, 2414–2477. [Google Scholar] [CrossRef]
- van der Tol, J.J.B.; Vantomme, G.; Palmans, A.R.A.; Meijer, E.W. Controlling the Processability and Stability of Supramolecular Polymers Using the Interplay of Intra- and Intermolecular Interactions. Macromolecules 2022, 55, 6820–6829. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Bronich, T.K.; Kabanov, V.A.; Yu, K.; Eisenberg, A. Soluble stoichiometric complexes from poly (N-ethyl-4-vinylpyridinium) cations and poly (ethylene oxide)-block-polymethacrylate anions. Macromolecules 1996, 29, 6797–6802. [Google Scholar] [CrossRef]
- Burova, T.V.; Grinberg, N.V.; Grinberg, V.Y.; Tang, Y.; Zhang, G.; Khokhlov, A.R. Order-Disorder Conformational Transitions of N-Isopropylacrylamide−Sodium Styrene Sulfonate Copolymers in Aqueous Solutions. Macromolecules 2008, 41, 5981–5984. [Google Scholar] [CrossRef]
- Nicolas, M.; Beyou, E.; Fumagalli, M. Two-step synthesis of polystyrene sulfonate based copolymers bearing pendant primary amines. Eur. Polym. J. 2021, 152, 110455. [Google Scholar] [CrossRef]
- Piogé, S.; Fontaine, L.; Gaillard, C.; Nicol, E.; Pascual, S. Self-Assembling Properties of Well-Defined Poly(ethylene oxide)-b-poly(ethyl acrylate) Diblock Copolymers. Macromolecules 2009, 42, 4262–4272. [Google Scholar] [CrossRef]
- Kawata, T.; Hashidzume, A.; Sato, T. Micellar structure of amphiphilic statistical copolymers bearing dodecyl hydrophobes in aqueous media. Macromolecules 2007, 40, 1174–1180. [Google Scholar] [CrossRef]
- Shashkina, Y.A.; Zaroslov, Y.D.; Smirnov, V.A.; Philippova, O.E.; Khokhlov, A.R.; Pryakhina, T.A.; Churochkina, N.A. Hydrophobic aggregation in aqueous solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration. Polymer 2003, 44, 2289–2293. [Google Scholar] [CrossRef]
- Krayukhina, M.A.; Samoilova, N.A.; Yamskov, I.A. Polyelectrolyte complexes of chitosan: Formation, properties and applications. Russ. Chem. Rev. 2008, 77, 799. [Google Scholar] [CrossRef]
- Ortona, O.; D’Errico, G.; Mangiapia, G.; Ciccarelli, D. The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr. Polym. 2008, 74, 16–22. [Google Scholar] [CrossRef]
- Lopez, C.G.; Colby, R.H.; Cabral, J.T. Electrostatic and Hydrophobic Interactions in NaCMC Aqueous Solutions: Effect of Degree of Substitution. Macromolecules 2018, 51, 3165–3175. [Google Scholar] [CrossRef]
- Lu, A.; Wang, J.; Najarro, M.C.; Li, S.; Deratani, A. Synthesis and self-assembly of AB2-type amphiphilic copolymers from biobased hydroxypropyl methyl cellulose and poly (L-lactide). Carbohydr. Polym. 2019, 211, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Burova, T.V.; Grinberg, N.V.; Tur, D.R.; Papkov, V.S.; Dubovik, A.S.; Shibanova, E.D.; Bairamashvili, D.I.; Grinberg, V.Y.; Khokhlov, A.R. Ternary interpolyelectrolyte complexes insulin-poly (methylaminophosphazene)-dextran sulfate for oral delivery of insulin. Langmuir 2013, 29, 2273–2281. [Google Scholar] [CrossRef]
- Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355. [Google Scholar] [CrossRef]
- Kedracki, D.; Abraham, J.N.; Prado, E.; Nardin, C. Self-Assembly of Biohybrid Polymers. In Macromolecular Self-Assembly; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 193–229. [Google Scholar]
- Moradi-Araghi, A. A review of thermally stable gels for fluid diversion in petroleum production. J. Pet. Sci. Eng. 2000, 26, 1–10. [Google Scholar] [CrossRef]
- Abirov, R.; Ivakhnenko, A.P.; Abirov, Z.; Eremin, N.A. The associative polymer flooding: An experimental study. J. Pet. Explor. Prod. Technol. 2020, 10, 447–454. [Google Scholar] [CrossRef]
- Gogoi, S.; Gogoi, S.B. Review on microfluidic studies for EOR application. J. Pet. Explor. Prod. Technol. 2019, 9, 2263–2277. [Google Scholar] [CrossRef]
- Green, M.S.; Tobolsky, A.V. A New Approach to the Theory of Relaxing Polymeric Media. J. Chem. Phys. 1946, 14, 80–92. [Google Scholar] [CrossRef]
- Rubinstein, M.; Dobrynin, A.V. Associations leading to formation of reversible networks and gels. Curr. Opin. Colloid Interface Sci. 1999, 4, 83–87. [Google Scholar] [CrossRef]
- Rubinstein, M.; Dobrynin, A.V. Solutions of associative polymers. Trends Polym. Sci. 1997, 5, 181–186. [Google Scholar]
- Semenov, A.N.; Rubinstein, M. Thermoreversible Gelation in Solutions of Associative Polymers. 1. Statics. Macromolecules 1998, 31, 1373–1385. [Google Scholar] [CrossRef]
- Rubinstein, M.; Semenov, A.N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 1998, 31, 1386–1397. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q.; Colby, R.H. Dynamics of associative polymers. Soft Matter 2018, 14, 2961–2977. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 1640–1655. [Google Scholar] [CrossRef]
- Kujawa, P.; Audibert-Hayet, A.; Selb, J.; Candau, F. Effect of Ionic Strength on the Rheological Properties of Multisticker Associative Polyelectrolytes. Macromolecules 2006, 39, 384–392. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, C.; Weiss, R.A.; Chen, Q. Association energy in strongly associative polymers. J. Rheol. 2017, 61, 1199–1207. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, H.; Tang, P.; Yang, Y. Linear Viscoelasticity of Associative Polymers: Sticky Rouse Model and the Role of Bridges. Macromolecules 2020, 53, 3438–3451. [Google Scholar] [CrossRef]
- Chassenieux, C.; Nicolai, T.; Benyahia, L. Rheology of associative polymer solutions. Curr. Opin. Colloid Interface Sci. 2011, 16, 18–26. [Google Scholar] [CrossRef]
- Middleton, L.R.; Winey, K.I. Nanoscale aggregation in acid-and ion-containing polymers. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 499–523. [Google Scholar] [CrossRef] [PubMed]
- Staudinger, H.; Heuer, W. Über hochpolymere Verbindungen, 33. Mitteilung: Beziehungen zwischen Viscosität und Molekulargewicht bei Poly-styrolen. Ber. Dtsch. Chem. Ges. A B Ser. 1930, 63, 222–234. [Google Scholar] [CrossRef]
- Wolff, C.; Silberberg, A.; Priel, Z.; Layec-Raphalen, M. Influence of the association of macromolecules in dilute solution on their reduced viscosity. Polymer 1979, 20, 281–287. [Google Scholar] [CrossRef]
- Abdala, A.A.; Olesen, K.; Khan, S.A. Solution rheology of hydrophobically modified associative polymers: Solvent quality and hydrophobic interactions. J. Rheol. 2003, 47, 497–511. [Google Scholar] [CrossRef][Green Version]
- Pathak, J.A.; Nugent, S.; Bender, M.F.; Roberts, C.J.; Curtis, R.J.; Douglas, J.F. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers 2021, 13, 601. [Google Scholar] [CrossRef]
- Roche, A.; Gentiluomo, L.; Sibanda, N.; Roessner, D.; Friess, W.; Trainoff, S.P.; Curtis, R. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient. J. Colloid Interface Sci. 2022, 607, 1813–1824. [Google Scholar] [CrossRef]
- Flory, P.J.; Fox, T.G. Treatment of Intrinsic Viscosities. J. Am. Chem. Soc. 1951, 73, 1904–1908. [Google Scholar] [CrossRef]
- Kraemer, E.O. Molecular Weights of Celluloses and Cellulose Derivates. Ind. Eng. Chem. 1938, 30, 1200–1203. [Google Scholar] [CrossRef]
- Rutgers, I.R. Relative viscosity and concentration. Rheol. Acta 1962, 2, 305–348. [Google Scholar] [CrossRef]
- Budtov, V.P. Physical Chemistry of Polymer Solutions; Khimiya: Saint Petersburg, Russia, 1992; p. 381. [Google Scholar]
- Lu, Y.; An, L.; Wang, Z.-G. Intrinsic Viscosity of Polymers: General Theory Based on a Partially Permeable Sphere Model. Macromolecules 2013, 46, 5731–5740. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, T.; An, L.; Jin, L.; Wang, Z.-G. A simple model for the anomalous intrinsic viscosity of dendrimers. Soft Matter 2010, 6, 2619–2622. [Google Scholar] [CrossRef]
- Yan, D. Intrinsic viscosity of polymer solutions: Fresh ideas to an old problem. Sci. China Chem. 2015, 58, 835–838. [Google Scholar] [CrossRef]
- Mead, D.J.; Fuoss, R.M. Viscosities of Solutions of Polyvinyl Chloride. J. Am. Chem. Soc. 1942, 64, 277–282. [Google Scholar] [CrossRef]
- Huggins, M.L. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc. 1942, 64, 2716–2718. [Google Scholar] [CrossRef]
- Tsvetkov, V.N.; Eskin, V.E.; Frenkel, S.Y. Structure of Macromolecules in Solution; The National Lending Library for Science and Technology: London, UK, 1971. [Google Scholar]
- Pamies, R.; Hernández Cifre, J.G.; del Carmen López Martínez, M.; García de la Torre, J. Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym. Sci. 2008, 286, 1223–1231. [Google Scholar] [CrossRef]
- Schoff, C. Concentration Dependence of the Viscosity of Dilute Polymer Solutions: Huggins and Schulz-Blaschke Constants. In The Wiley Database of Polymer Properties; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cohen, J.; Priel, Z.; Rabin, Y. Viscosity of dilute polyelectrolyte solutions. J. Chem. Phys. 1988, 88, 7111–7116. [Google Scholar] [CrossRef]
- Weissberg, S.; Simha, R.; Rothman, S. Viscosity of dilute and moderately concentrated polymer solutions. J. Res. Natl. Bur. Stand. 1951, 47, 298–314. [Google Scholar] [CrossRef]
- Gavrilova, I.I.; Panarin, E.F.; Nesterova, N.A. Homopolymerization of N-vinylamides in the presence of water-soluble initiators and preparation of polyelectrolytes from the polymerization products. Russ. J. Appl. Chem. 2012, 85, 413–416. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Okatova, O.V.; Gubarev, A.S.; Gavrilova, I.I.; Panarin, E.F. Strong Linear Polyelectrolytes in Solutions of Extreme Concentrations of One–One Valent Salt. Hydrodynamic Study. Macromolecules 2014, 47, 2748–2758. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Gosteva, A.A.; Okatova, O.V.; Dommes, O.A.; Gavrilova, I.I.; Panarin, E.F. Detection and evaluation of polymer–polymer interactions in dilute solutions of associating polymers. Polym. Chem. 2021, 12, 2325–2334. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Zaitseva, I.I.; Gubarev, A.S.; Gavrilova, I.I.; Panarin, E.F. Diffusion-viscometric analysis and conformational characteristics of sodium polystyrenesulfonate molecules. Russ. J. Appl. Chem. 2006, 79, 1490–1493. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Okatova, O.V.; Mikhailova, A.V.; Ulyanova, N.N.; Gavrilova, I.I.; Panarin, E.F. Conformational Parameters of Poly(N-methyl-N-vinylacetamide) Molecules Through the Hydrodynamic Characteristics Studies. Macromol. Biosci. 2010, 10, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, G.; Zaitseva, I.I.; Mikhailova, N.A. Hydrodynamic and molecular characteristics of hydroxypropylmethyl cellulose and rheology of its aqueous solutions. Polym. Sci. Ser. A 2004, 46, 1068–1071. [Google Scholar]
- Pavlov, G.M.; Gubarev, A.S.; Gavrilova, I.I.; Panarin, E.F. Conformations of sodium poly(styrene-4-sulfonate) macromolecules in solutions with different ionic strengths. Polym. Sci. Ser. A 2011, 53, 1003–1011. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Kolbina, G.F.; Okatova, O.V.; Gavrilova, I.I.; Panarin, E.F. Unimolecular micelles based on amphiphilic of N-methyl-N-vinylacetamide copolymers. Dokl. Chem. 2015, 463, 181–184. [Google Scholar] [CrossRef]
- Dommes, O.A.; Gosteva, A.A.; Okatova, O.V.; Pavlov, G.M. Sizes Monitoring of Polyelectrolyte Flexible Chains over the Entire Range of Ionic Strength through Viscometry of Dilute Solutions. Rev. Adv. Chem. 2021, 11, 134–144. [Google Scholar] [CrossRef]
- Lavrenko, P.N.; Okatova, O.V. New cell and methods of forming boundaries when studying macromolecular diffusion in solutions. Polym. Sci. USSR 1977, 19, 3049–3054. [Google Scholar] [CrossRef]
- Tsvetkov, V.N. Rigid-Chain Polymers: Hydrodynamic and Optical Properties in Solution; Springer: New York, NY, USA, 1989; p. 490. [Google Scholar]
- Schuck, P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 2000, 78, 1606–1619. [Google Scholar] [CrossRef]
- Brown, P.H.; Schuck, P. A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput. Phys. Commun. 2008, 178, 105–120. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- López Martínez, M.C.; Díaz Baños, F.G.; Ortega Retuerta, A.; García de la Torre, J. Multiple Linear Least-Squares Fits with a Common Intercept: Determination of the Intrinsic Viscosity of Macromolecules in Solution. J. Chem. Educ. 2003, 80, 1036. [Google Scholar] [CrossRef]
- Gubarev, A.S. Conformations of Water-Soluble Aromatic Macromolecules in Solutions of Various Ionic Strengths and Orientational Order in Films Prepared on Their Basis; Saint Petersburg State University: Saint Petersburg, Russia, 2010. [Google Scholar]
- Takahashi, A.; Kato, T.; Nagasawa, M. The Second Virial Coefficient of Polyelectrolytes. J. Phys. Chem. 1967, 71, 2001–2010. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Gubarev, A.S. Intrinsic viscosity of strong linear polyelectrolytes in solutions of low ionic strength and its interpretation. In Advances in Physicochemical Properties of Biopolymers: Part 1; Bentham Science Publishers BV: Sharjah, United Arab Emirates, 2017; pp. 433–460. [Google Scholar]
- Kurata, M.; Tsunashima, Y. Viscosity—Molecular Weight Relationships and Unperturbed Dimensions of Linear Chain Molecules. In The Wiley Database of Polymer Properties; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Pavlov, G.; Harding, S.; Rowe, A. Normalized scaling relations as a natural classification of linear macromolecules according to size. In Analytical Ultracentrifugation V; Springer: Berlin/Heidelberg, Germany, 1999; pp. 76–80. [Google Scholar]
- Pavlov, G.M. Size and average density spectra of macromolecules obtained from hydrodynamic data. Eur. Phys. J. E 2007, 22, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, G.M. Hydrodynamics of Macromolecules: Conformation Zoning for General Macromolecules. In Encyclopedia of Biophysics; Roberts, G., Watts, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–13. [Google Scholar]
- Pavlov, G.M.; Dommes, O.A.; Okatova, O.V.; Gavrilova, I.I.; Panarin, E.F. Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions. Phys. Chem. Chem. Phys. 2018, 20, 9975–9983. [Google Scholar] [CrossRef] [PubMed]
Sample | |||||
---|---|---|---|---|---|
1 | 540 | 219 ± 4 | 218 ± 2 | 0.36 ± 0.04 | 0.14 ± 0.02 |
2 | 440 | 189 ± 1 | 188 ± 1 | 0.35 ± 0.02 | 0.14 ± 0.02 |
3 | 230 | 113.9 ± 0.2 | 112.5 ± 0.3 | 0.23 ± 0.01 | 0.20 ± 0.01 |
4 | 205 | 107.4 ± 0.7 | 107.6 ± 0.5 | 0.40 ± 0.02 | 0.12 ± 0.01 |
5 | 87 | 55.1 ± 0.1 | 55.74 ± 0.02 | 0.49 ± 0.01 | 0.09 ± 0.01 |
6 | 52 | 40 ± 1 | 40 ± 1 | 0.24 ± 0.04 | 0.22 ± 0.04 |
7 | 52 | 40.4 ± 0.3 | 40.7 ± 0.1 | 0.44 ± 0.02 | 0.11 ± 0.01 |
8 | 17 | 16.1 ± 0.1 | 16.3 ± 0.1 | 0.42 ± 0.2 | 0.08 ± 0.02 |
9 | 7.3 | 10.6 ± 0.5 | 10.5 ± 0.4 | 0.44 ± 0.21 | 0.09 ± 0.15 |
11 | 5.2 | 10.9 ± 0.1 | 10.9 ± 0.1 | 0.05 ± 0.03 | 0.38 ± 0.04 |
12 | 6.7 | 8.5 ± 0.1 | 8.6 ± 0.1 | 0.41 ± 0.08 | 0.13 ± 0.05 |
Sample | |||||||
---|---|---|---|---|---|---|---|
PSSNa-2 | 847 | 11.9 ± 0.6 | 14.5 ± 0.1 | 1.22 | 1.8 ± 0.1 | 5.5 ± 0.9 | 2.1 ± 0.2 |
PSSNa-3 | 607 | 14.4 ± 1.0 | 17.2 ± 0.2 | 1.19 | 1.1 ± 0.1 | 3.9 ± 0.9 | 1.4 ± 0.2 |
PSSNa-4 | 605 | 11.0 ± 0.6 | 14.3 ± 0.1 | 1.30 | 1.4 ± 0.1 | 5.7 ± 0.9 | 1.6 ± 0.1 |
PSSNa-5 | 448 | 9.5 ± 0.7 | 12.7 ± 0.1 | 1.34 | 1.6 ± 0.1 | 7 ± 2 | 1.8 ± 0.1 |
PSSNa-6 | 375 | 9.6 ± 0.9 | 12.3 ± 0.2 | 1.27 | 1.4 ± 0.1 | 6 ± 2 | 1.6 ± 0.2 |
PSSNa-7 | 124 | 3.6 ± 0.5 | 5.9 ± 0.1 | 1.64 | 2.1 ± 0.2 | 14 ± 5 | 3.2 ± 0.6 |
PSSNa-8 | 84 | 2.9 ± 0.6 | 6.0 ± 0.2 | 2.03 | 2.1 ± 0.1 | 23 ± 15 | 1.7 ± 0.3 |
PSSNa-9 | 53 | 3.0 ± 0.4 | 5.3 ± 0.1 | 1.77 | 1.8 ± 0.1 | 15 ± 6 | 1.8 ± 0.2 |
Sample | |||||
---|---|---|---|---|---|
PSSNa-1 | 1500 | 372 ± 3 | 368 ± 3 | 0.28 ± 0.02 | 0.17 ± 0.01 |
PSSNa-2 | 847 | 174 ± 1 | 173.4 ± 0.6 | 0.35 ± 0.01 | 0.14 ± 0.01 |
PSSNa-3 | 607 | 170 ± 3 | 168 ± 2 | 0.32 ± 0.04 | 0.16 ± 0.02 |
PSSNa-4 | 605 | 117 ± 1 | 117 ± 1 | 0.40 ± 0.03 | 0.12 ± 0.02 |
PSSNa-5 | 448 | 117 ± 1 | 115.7 ± 0.4 | 0.29 ± 0.02 | 0.17 ± 0.01 |
PSSNa-6 | 375 | 109 ± 1 | 108 ± 1 | 0.29 ± 0.02 | 0.16 ± 0.01 |
PSSNa-7 | 124 | 43.5 ± 0.6 | 43.3 ± 0.4 | 0.33 ± 0.03 | 0.16 ± 0.01 |
PSSNa-8 | 84 | 29.8 ± 0.4 | 29.2 ± 0.1 | 0.31 ± 0.02 | 0.15 ± 0.01 |
PSSNa-9 | 53 | 22.0 ± 0.2 | 21.8 ± 0.2 | 0.32 ± 0.02 | 0.15 ± 0.01 |
PSSNa-10 | 51 | 20.0 ± 0.1 | 20.0 ± 0.1 | 0.36 ± 0.01 | 0.14 ± 0.01 |
Sample | Solvent | ||||||
---|---|---|---|---|---|---|---|
1 | 0.1 M NaCl | 77 | 12 ± 2 | 16 ± 5 | 18,5 ± 0,9 | 3.2 ± 0,5 | 3.7 ± 0.2 |
2 | 151 | 36 ± 3 | 4 ± 1 | 41 ± 2 | 1.5 ± 0.3 | 1.7 ± 0.2 | |
3 | 151 | 42 ± 5 | 6 ± 2 | 54 ± 2 | 1.3 ± 0,2 | 1.39 ± 0.08 | |
4 | 156 | 64 ± 3 | 1.52 ± 0.2 | 68.6 ± 0.5 | 0.30 ± 0.02 | 0.31 ± 0.02 | |
5 | 149 | 64 ± 2 | 1.7 ± 0.2 | 72 ± 2 | 0.30 ± 0.07 | 0.25 ± 0.05 | |
6 | DMFA + 0.1 M LiCl | 148 | 65.3 ± 0.6 | 0.32 ± 0.03 | 65.1 ± 0.5 | –0.16 ± 0.01 | −0.15 ± 0.02 |
7 | - | 64.8 ± 0.2 | 0.32 ± 0.01 | 64.6 ± 0.2 | –0.165 ± 0.008 | −0.165 ± 0.008 | |
8 | 55 | 37.9 ± 0.4 | 0.43 ± 0.03 | 38.2 ± 0.2 | –0.12 ± 0.01 | −0.108 ± 0.008 | |
9 | 0.1 M NaCl | 98 | 102.9 ± 0.8 | 0.26 ± 0.02 | 101.8 ± 0.3 | –0.189 ± 0.007 | −0.196 ± 0.005 |
10 | 97 | 104.3 ± 0.5 | 0.23 ± 0.01 | 103.2 ± 0.2 | –0.205 ± 0.005 | −0.208 ± 0.004 |
Sample | |||
---|---|---|---|
PSSNa-1 | 1500 | 15,400 ± 300 | 0.21 ± 0.03 |
PSSNa-2 | 847 | 8900 ± 60 | 0.39 ± 0.01 |
PSSNa-3 | 607 | 8200 ± 90 | 0.36 ± 0.02 |
PSSNa-4 | 605 | 5100 ± 30 | 0.57 ± 0.02 |
PSSNa-5 | 448 | 5900 ± 50 | 0.59 ± 0.02 |
PSSNa-6 | 375 | 4800 ± 200 | 0.47 ± 0.08 |
PSSNa-7 | 124 | 660 ± 40 | 0.46 ± 0.04 |
PSSNa-8 | 84 | 260 ± 10 | 0.59 ± 0.07 |
PSSNa-9 | 53 | 135 ± 7 | 0.58 ± 0.08 |
PSSNa-10 | 51 | 167 ± 6 | 0.76 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gosteva, A.; Gubarev, A.S.; Dommes, O.; Okatova, O.; Pavlov, G.M. New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions. Polymers 2023, 15, 961. https://doi.org/10.3390/polym15040961
Gosteva A, Gubarev AS, Dommes O, Okatova O, Pavlov GM. New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions. Polymers. 2023; 15(4):961. https://doi.org/10.3390/polym15040961
Chicago/Turabian StyleGosteva, Anna, Alexander S. Gubarev, Olga Dommes, Olga Okatova, and Georges M. Pavlov. 2023. "New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions" Polymers 15, no. 4: 961. https://doi.org/10.3390/polym15040961
APA StyleGosteva, A., Gubarev, A. S., Dommes, O., Okatova, O., & Pavlov, G. M. (2023). New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions. Polymers, 15(4), 961. https://doi.org/10.3390/polym15040961