Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs)
Abstract
:1. Introduction
2. Literature Review
2.1. Literature Review on Fiber-Reinforced Concrete
2.2. Literature Review on Cementitious Composites with CNTs
2.3. Literature Review on the Bond Behavior of a Rebar
2.3.1. CEB-FIP Model Code 2010 [37]
2.3.2. Soroushian et al. [34]
2.3.3. Harajili et al. [36]
2.3.4. Comparison of Existing Models
3. Research Significance
4. Test Program
4.1. Materials
4.2. Pullout Test Specimens
4.3. Fabrication
4.4. Pull-Out Test Set-Up and Procedure
5. Test Results
5.1. Material Properties
5.2. Pullout Test Results
5.2.1. Failure Mode
5.2.2. Bond Stress-Slip Responses
5.2.3. Bond Strength
5.2.4. Slip Corresponding to the Bond Strength
5.2.5. α Coefficient
6. Proposed Model and Its Verification
6.1. Proposed Model
6.2. Verifications
7. Conclusions
- All of the specimens exhibited pull-out failure with neither a splitting crack nor rebar yielding, so the bond behavior of the rebar embedded in the PVA cementitious composites could be rigorously measured.
- Regarding the effect of the rebar, the bond strength of the rebar embedded in PVA cementitious composites increased as the rebar diameter increased. Meanwhile, it was demonstrated that the slip corresponding to the bond strength increased as the rebar diameter increased.
- The bond strength of the rebar embedded in PVA cementitious composites generally increased with the increasing CNTs mix ratio because the compressive strength of the PVA cementitious composites was increased. Therefore, it can be concluded that the bond strength of a rebar embedded in PVA cementitious composites can be improved with CNTs.
- The existing models overestimated the test results for the bond behavior of the rebar embedded in PVA cementitious composites with no CNTs. The main reason for the overestimation is inferred to be because the existing models are designated for the bond behavior of a rebar embedded in ordinary concrete containing coarse aggregate. In contrast, the PVA cementitious composites contain no coarse aggregate.
- By comparing the test results and the existing models, it was shown that the existing models generally overestimated the bond strength of a rebar embedded in PVA cementitious composites by 42~66% as they were initially designated for a rebar embedded in ordinary concrete with coarse aggregated. In addition, the previous models generally overestimated the bond stress of a rebar embedded in cementitious composites, and this tendency was more severe as the rebar diameter increased.
- Through the regression with the test results, a new simple model has been proposed to represent the bond stress-slip behavior of a rebar embedded in PVA cementitious composites with or without CNTs. The bond strength and the corresponding slip were evaluated in the proposed model considering the rebar diameter. The effect of the CNTs’ mix ratio was considered with the compressive strength of the PVA cementitious composites. Through the comparison with the test results, the proposed model predicted the actual bond strength of the rebar well, with an average of 1.02 and a standard deviation of 0.24 for the ratio of the model predictions to the test results.
- It is expected that the results of this study can be used in research on the anchorage length of a rebar and crack control in PVA cementitious composites with or without CNTs. In addition, this study can be helpful in the relevant research area on the structural behavior of PVA cementitious composites with or without CNTs.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Naaman, A.E.; Namur, G.G.; Alwan, J.M.; Najm, H.S. Fiber Pullout and Bond Slip I: Analytical Study. J. Struct. Eng. ASCE 1991, 117, 2769–2790. [Google Scholar] [CrossRef]
- Marti, P.; Pfyl, T.; Sigrist, V.; Ulaga, T. Harmonized Test Procedures for Steel Fiber-Reinforced Concrete. ACI Mater. J. 1999, 96, 676–685. [Google Scholar] [CrossRef]
- Voo, J.Y.L.; Foster, S.J. Variable Engagement Model for Fibre Reinforced Concrete in Tension; Uniciv. report no. r-420; University of New South Wales, School of Civil and Environmental Engineering: Sydney, Australia, 2003; p. 86. [Google Scholar]
- Leutbecher, T.; Fehling, E. Crack Width Control for Combined Reinforcement of Rebars and Fibers Exemplified by Ultra-High-Performance Concrete. In Ultra High Performance Fibre Reinforced Concrete—UHPFRC. fib Task Group 8. 2008, Volume 6, pp. 1–28. Available online: https://www.bau.uni-siegen.de/subdomains/massivbau/publikationen/download/crack_width_control_for_combined_reinforcement_of_rebars_and_fibres_exemplified_by_ultra-high-performance_concrete.pdf (accessed on 5 January 2023).
- Stroeven, P. Stereological Principles of Spatial Modeling Applied to Steel Fiber-Reinforced Concrete in Tension. ACI Mater. J. 2009, 106, 213–222. [Google Scholar] [CrossRef]
- Lee, S.-C.; Cho, J.-Y.; Vecchio, F.J. Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Development. ACI Mater. J. 2011, 108, 516–525. [Google Scholar] [CrossRef]
- Lee, S.-C.; Cho, J.-Y.; Vecchio, F.J. Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Verification. ACI Mater. J. 2011, 108, 526–535. [Google Scholar] [CrossRef]
- Lee, S.-C.; Cho, J.-Y.; Vecchio, F.J. Simplified Diverse Embedment Model for Steel Fiber-Reinforced Concrete Elements in Tension. ACI Mater. J. 2013, 110, 403–412. [Google Scholar] [CrossRef]
- Ezeldin, A.S.; Balaguru, P.N. Normal and high strength fiber reinforced concrete under compression. J. Mater. Civ. Eng. 1992, 4, 415–429. [Google Scholar] [CrossRef]
- Hsu, L.S.; Hsu, C.T.T. Stress-strain behavior of steel-fiber high-strength concrete under compression. ACI Mater. J. 1994, 91, 448–457. [Google Scholar] [CrossRef]
- Someh, A.K.; Saeki, N. Prediction for the stress-strain curve of steel fiber reinforced concrete. Proc. Jpn. Concr. Inst. 1996, 18, 1149–1154. [Google Scholar]
- Mansur, M.A.; Chin, M.S.; Wee, T.H. Stress-strain relationship of high-strength fiber concrete in compression. J. Mater. Civ. Eng. 1999, 11, 21–29. [Google Scholar] [CrossRef]
- Nataraja, M.; Dhang, N.; Gupta, A. Stress-strain curves for steel-fiber reinforced concrete under compression. Cem. Concr. Compos. 1999, 21, 383–390. [Google Scholar] [CrossRef]
- Noghabai, K. Behavior of Tie Elements of Plain and Fibrous Concrete and Varying Cross Sections. ACI Struct. J. 2000, 97, 277–285. [Google Scholar] [CrossRef]
- Bischoff, P.H. Tension Stiffening and Cracking of Steel FiberReinforced Concrete. J. Mater. Civ. Eng. 2003, 15, 174–182. [Google Scholar] [CrossRef]
- Deluce, J.R.; Vecchio, F.J. Cracking Behavior of Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement. ACI Struct. J. 2013, 110, 481–490. [Google Scholar] [CrossRef]
- Lee, S.-C.; Cho, J.-Y.; Vecchio, F.J. Tension-Stiffening Model for Steel Fiber-Reinforced Concrete Containing Conventional Reinforcement. ACI Struct. J. 2013, 110, 639–648. [Google Scholar] [CrossRef]
- Spinella, N.; Colajanni, P.; La Mendola, L. Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers. ACI Struct. J. 2012, 109, 53–64. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, D.H.; Hwang, J.H.; Kuchma, D.A. Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcements. Compos. Part B Eng. 2012, 43, 2324–2334. [Google Scholar] [CrossRef]
- Lee, S.C.; Cho, J.Y.; Vecchio, F.J. Analysis of Steel Fiber-Reinforced Concrete Elements Subjected to Shear. ACI Struct. J. 2016, 113, 275–285. [Google Scholar] [CrossRef]
- Kang, J.; Al-Sabah, S.; Théo, R. Effect of single-walled carbon nanotubes on strength properties of cement composites. Materials 2020, 13, 1305. [Google Scholar] [CrossRef]
- Silvestro, L.; Gleize, P.J.P. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. Constr. Build. Mater. 2020, 264, 120237. [Google Scholar] [CrossRef]
- Cerro-Prada, E.; Pacheco-Torres, R.; Varela, F. Effect of multi-walled carbon nanotubes on strength and electrical properties of cement mortar. Materials 2020, 14, 79. [Google Scholar] [CrossRef]
- Amin, M.S.; El-Gamal, S.M.A.; Hashem, F.S. Fire resistance and mechanical properties of carbon nanotubes–clay bricks wastes (Homra) composites cement. Constr. Build. Mater. 2015, 98, 237–249. [Google Scholar] [CrossRef]
- Zhang, L.W.; Kai, M.F.; Liew, K.M. Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures. Compos. Part A Appl. Sci. Manuf. 2017, 95, 286–293. [Google Scholar] [CrossRef]
- Nam, I.W.; Lee, H.K.; Sim, J.B.; Choi, S.M. Electromagnetic characteristics of cement matrix materials with carbon nanotubes. ACI Mater. J. 2012, 109, 363. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.; Yoo, D.Y. Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Constr. Build. Mater. 2018, 185, 530–544. [Google Scholar] [CrossRef]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Park, H.M.; Kim, G.M.; Lee, S.Y.; Jeon, H.; Kim, S.Y.; Kim, M.; Kim, J.W.; Jung, Y.C.; Yang, B.J. Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Constr. Build. Mater. 2018, 165, 484–493. [Google Scholar] [CrossRef]
- Jang, A.-Y.; Lim, S.-H.; Kim, D.-H.; Yun, H.-D.; Lee, G.-C.; Seo, S.-Y. Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression. Results Phys. 2020, 18, 103119. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.-C.; Yoo, S.-W. Workability and compressive behavior of PVA-ECC with CNTs. Geomech. Eng. 2022, 29, 311–320. [Google Scholar] [CrossRef]
- Nuaklong, P.; Boonchoo, N.; Jongvivatsakul, P.; Charinpanitkul, T.; Sukontasukkul, P. Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar. Constr. Build. Mater. 2021, 275, 122189. [Google Scholar] [CrossRef]
- Soroushian, P.; Choi, K.B. Local bond of deformed bars with different diameters in confined concrete. Struct. J. 1989, 86, 217–222. [Google Scholar] [CrossRef]
- Soroushian, P.; Choi, K.B.; Park, G.H.; Aslani, F. Bond of deformed bars to concrete: Effects of confinement and strength of concrete. Mater. J. 1991, 88, 227–232. [Google Scholar] [CrossRef]
- Eligehausen, R.; Popov, E.P.; Bertero, V.V. Local bond stress-slip relationships of deformed bars under generalized excitations. Proc. Eur. Conf. Earthq. Eng. 1982, 4, 69–80. [Google Scholar] [CrossRef]
- Harajli, M.H.; Hout, M.; Jalkh, W. Local bond stress-slip behavior of reinforcing bars embedded in plain and fiber concrete. Mater. J. 1995, 92, 343–353. [Google Scholar] [CrossRef]
- Comite Euro-International Du Beton. CEB-FIP Model Code 2010; Thomas Telford Services Ltd., Thomas Telford House: London, UK, 2011. [Google Scholar]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Kim, G.M.; Naeem, F.; Kim, H.K.; Lee, H.K. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Compos. Struct. 2016, 136, 162–170. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Taha, R.; Taqa, A.A.; Shaat, A. Optimum carbon nanotubes’ content for improving flexural and compressive strength of cement paste. Constr. Build. Mater. 2017, 150, 395–403. [Google Scholar] [CrossRef]
- Lee, H.; Kang, D.; Kim, J.; Choi, K.; Chung, W. Void detection of cementitious grout composite using single-walled and multi-walled carbon nanotubes. Cem. Concr. Compos. 2019, 95, 237–246. [Google Scholar] [CrossRef]
- Hilding, J.; Grulke, E.A.; George Zhang, Z.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41. [Google Scholar] [CrossRef]
- Isfahani, F.T.; Li, W.; Redaelli, E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites. Cem. Concr. Compos. 2016, 74, 154–163. [Google Scholar] [CrossRef]
- KATS. Steel Bars for Reinforcement; KS D 3504; KATS: Eumseong-gun, Korea, 2021. (In Korean)
- Kim, S.H. Evaluation of Crack Width and Remaining Service Life for RC Flexural Members under Repeated Loading. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2004. [Google Scholar]
- Oh, B.H.; Kim, S.H. Realistic Models for Local Bond Stress-Slip of Reinforced Concrete under Repeated Loading. J. Struct. Eng. 2007, 133, 216–224. [Google Scholar] [CrossRef]
- Pishro, A.A.; Feng, X. Experimental Study on Bond Stress between Ultra High Performance Concrete and Steel Reinforcement. Civ. Eng. J. 2018, 3, 1235–1246. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Shin, H.O. Bond performance of steel rebar embedded in 80–180 MPa ultra-high-strength concrete. Cem. Concr. Compos. 2018, 93, 206–217. [Google Scholar] [CrossRef]
- Madani, H.; Bagheri, A.; Parhizkar, T. The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem. Concr. Res. 2012, 42, 1563–1570. [Google Scholar] [CrossRef]
- Mudasir, P.; Naqash, J.A. The effect of water cement ratio on the characteristics of multi-walled carbon nanotube reinforced concrete. Mater. Today Proc. 2021, 43, 3852–3855. [Google Scholar] [CrossRef]
- Papayianni, I.; Pachta, V.; Stefanidou, M. Experimental study of nano-modified lime-based grouts. World J. Eng. 2013, 9, 501–508. [Google Scholar] [CrossRef]
- ASTM C39/C39M-18; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2018.
- Wardeh, G.; Ghorbel, E.; Gomart, H.; Fiorio, B. Experimental and analytical study of bond behavior between recycled aggregate concrete and steel bars using a pullout test. Struct. Concr. 2017, 18, 811–825. [Google Scholar] [CrossRef]
- De Larrard, F.; Shaller, I.; Fuchs, J. Effect of the bar diameter on the bond strength of passive reinforcement in high-performance concrete. ACI Mater. J. 1993, 90, 333–339. [Google Scholar] [CrossRef]
Type | Diameter (nm) | Length (nm–cm) | Tensile Strength (GPa) | Electrical Conductivity (S/cm) | Heat Conductivity (W/m·k) |
---|---|---|---|---|---|
SWCNTs | 0.5–3.0 | 100–1 | Up to 53 | 10,000 | Max. 6000 |
MWCNTs | 5–100 | 100–1 | Up to 63 | 6000 | Max. 3000 |
Specimen | CNT (wt.%) | Binder (B) (kg/m3) | Nonbinder (kg/m3) | Water (W) (kg/m3) | W/B (%) | Fiber Volume Fraction (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
OPC | BFS | FA | Sand | LA | SP | SRA | |||||
CNT-0.0 | 0.0 | 412 | 220 | 412 | 275 | 14 | 1.92 | 0.4 | 343 | 32.9 | 2.07 |
CNT-0.1 | 0.1 | ||||||||||
CNT-0.2 | 0.2 | ||||||||||
CNT-0.3 | 0.3 |
Length (mm) | Diameter (mm) | Density (g/cm3) | Tensile Strength (MPa) | Modulus of Elasticity (MPa) |
---|---|---|---|---|
12 | 0.039 | 1.3 | 1600 | 25~40 |
Type | Nominal Diameter (mm) | Nominal Cross-Sectional Area (mm2) | Nominal Perimeter (mm) | Rib Distance (mm) | Rib Height (mm) | Yield Strength (MPa) | Elastic Modulus (GPa) | |
---|---|---|---|---|---|---|---|---|
Min. | Max. | |||||||
D13 | 12.7 | 126.7 | 40 | 8.9 | 0.5 | 1.0 | 484 | 18.8 |
D16 | 15.9 | 198.6 | 50 | 11.1 | 0.7 | 1.4 | 447 | 19.9 |
D19 | 19.1 | 286.5 | 60 | 13.4 | 1 | 2 | 444 | 20.9 |
Specimen | Slump (mm) | Slump Flow (mm) |
---|---|---|
CNT-0.0 | 28.5 | 57.0 |
CNT-0.1 | 28.0 | 49.0 |
CNT-0.2 | 21.5 | 35.0 |
CNT-0.3 | 11.0 | 29.0 |
Specimen | Compressive Strength (MPa) | Strain (×10−3) | Modulus of Elasticity (GPa) | |||
---|---|---|---|---|---|---|
Each | Average (S.D.) | Each | Average (S.D.) | Each | Average (S.D.) | |
CNT-0.0 | 36.8 | 33.1 (2.8) | 3.15 | 2.87 (0.24) | 14.2 | 13.9 (0.5) |
32.7 | 2.90 | 14.2 | ||||
29.9 | 2.56 | 13.2 | ||||
CNT-0.1 | 27.6 | 27.8 (2.3) | 1.94 | 2.26 (0.54) | 9.6 | 12.4 (3.2) |
29.2 | 1.82 | 16.9 | ||||
26.7 | 3.01 | 10.6 | ||||
CNT-0.2 | 37.9 | 39.2 (2.9) | 2.69 | 2.89 (0.14) | 14.7 | 16.5 (1.5) |
38.2 | 2.97 | 16.4 | ||||
41.7 | 3.01 | 18.4 | ||||
CNT-0.3 | 42.8 | 40.6 (3.0) | 3.10 | 2.99 (0.12) | 17.4 | 17.4 (0.2) |
41.4 | 3.03 | 17.3 | ||||
37.6 | 2.82 | 17.7 |
Specimen | Rebar Type | Bond Strength | Slip Corresponding to the Bond Strength, | Coefficient | |||
---|---|---|---|---|---|---|---|
Each | Average (S.D.) | Each | Average (S.D.) | Each | Average (S.D.) | ||
CNT-0.0 | D13 | 12.1 | 11.8 (1.4) | 0.67 | 0.82 (0.22) | 0.32 | 0.31 (0.04) |
9.6 | 0.67 | 0.26 | |||||
13.0 | 1.13 | 0.35 | |||||
D16 | 10.7 | 11.6 (1.3) | 0.32 | 0.70 (0.27) | 0.84 | 0.50 (0.24) | |
10.7 | 0.87 | 0.34 | |||||
13.5 | 0.90 | 0.33 | |||||
D19 | 5.6 | 7.3 (1.7) | 0.34 | 0.38 (0.04) | 0.29 | 0.88 (0.59) | |
9.0 | 0.41 | 1.46 | |||||
CNT-0.1 | D13 | 12.1 | 10.9 (2.3) | 0.51 | 0.56 (0.06) | 0.33 | 0.34 (0.01) |
7.7 | 0.52 | 0.35 | |||||
13.0 | 0.64 | 0.33 | |||||
D16 | 8.2 | 8.6 (1.3) | 1.13 | 1.22 (0.49) | 0.39 | 0.31 (0.07) | |
10.3 | 0.68 | 0.33 | |||||
7.2 | 1.86 | 0.22 | |||||
D19 | 7.5 | 8.2 (0.7) | 0.93 | 1.14 (0.21) | 0.28 | 0.28 (0.01) | |
9.0 | 1.36 | 0.27 | |||||
CNT-0.2 | D13 | 9.6 | 8.8 (1.1) | 0.51 | 0.64 (0.14) | 0.31 | 0.29 (0.03) |
7.3 | 0.83 | 0.25 | |||||
9.6 | 0.59 | 0.31 | |||||
D16 | 10.7 | 12.5 (1.5) | 0.90 | 0.87 (0.25) | 0.33 | 0.28 (0.04) | |
12.3 | 1.16 | 0.25 | |||||
14.4 | 0.55 | 0.25 | |||||
D19 | 11.7 | 8.8 (2.9) | 0.98 | 1.43 (0.46) | 0.36 | 0.41 (0.05) | |
5.8 | 1.89 | 0.46 | |||||
CNT-0.3 | D13 | 11.6 | 14.1 (2.0) | 0.43 | 0.54 (0.24) | 0.43 | 0.59 (0.16) |
16.4 | 0.52 | 0.52 | |||||
14.5 | 0.81 | 0.81 | |||||
D16 | 18.5 | 18.3 (0.2) | 0.75 | 0.75 (0.00) | 0.35 | 0.41 (0.05) | |
18.1 | 0.76 | 0.46 | |||||
D19 | 13.5 | 13.2 (0.3) | 1.44 | 1.30 (0.14) | 0.36 | 0.49 (0.13) | |
12.9 | 1.16 | 0.62 |
Model | CEB-FIP Model Code 2010 [37] | Harajili et al. [36] | Soroushian et al. [34] | Proposed Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rebar | Specimen | Test | Model | M/T | Model | M/T | Model | M/T | Model | M/T |
D13 | CNT-0.0 | 11.6 | 14.4 | 1.24 | 14.8 | 1.28 | 17.7 | 1.53 | 12.7 | 1.10 |
CNT-0.1 | 10.9 | 13.2 | 1.21 | 13.6 | 1.24 | 16.2 | 1.48 | 11.6 | 1.06 | |
CNT-0.2 | 8.84 | 15.7 | 1.77 | 16.1 | 1.82 | 19.2 | 2.18 | 13.8 | 1.56 | |
CNT-0.3 | 14.1 | 15.9 | 1.13 | 16.4 | 1.16 | 19.6 | 1.38 | 14.0 | 0.99 | |
D16 | CNT-0.0 | 11.6 | 14.4 | 1.24 | 14.8 | 1.28 | 16.8 | 1.45 | 10.1 | 0.87 |
CNT-0.1 | 8.55 | 13.2 | 1.54 | 13.6 | 1.59 | 15.4 | 1.80 | 9.29 | 1.09 | |
CNT-0.2 | 12.5 | 15.7 | 1.26 | 16.1 | 1.29 | 18.3 | 1.47 | 11.0 | 0.89 | |
CNT-0.3 | 17.0 | 15.9 | 0.94 | 16.4 | 0.96 | 18.6 | 1.10 | 11.2 | 0.66 | |
D19 | CNT-0.0 | 6.81 | 14.4 | 2.11 | 14.8 | 2.17 | 16.0 | 2.35 | 8.43 | 1.24 |
CNT-0.1 | 7.99 | 13.2 | 1.65 | 13.6 | 1.70 | 14.7 | 1.84 | 7.73 | 0.97 | |
CNT-0.2 | 8.75 | 15.7 | 1.79 | 16.1 | 1.84 | 17.4 | 1.99 | 9.18 | 1.05 | |
CNT-0.3 | 13.2 | 15.9 | 1.20 | 16.4 | 1.24 | 17.7 | 1.34 | 9.34 | 0.71 | |
Avg. | 1.42 | 1.46 | 1.66 | 1.02 | ||||||
S.D. | 0.35 | 0.35 | 0.37 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Lee, S.-C.; Yoo, S.-W. Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs). Polymers 2023, 15, 884. https://doi.org/10.3390/polym15040884
Lee D, Lee S-C, Yoo S-W. Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs). Polymers. 2023; 15(4):884. https://doi.org/10.3390/polym15040884
Chicago/Turabian StyleLee, Dongmin, Seong-Cheol Lee, and Sung-Won Yoo. 2023. "Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs)" Polymers 15, no. 4: 884. https://doi.org/10.3390/polym15040884
APA StyleLee, D., Lee, S.-C., & Yoo, S.-W. (2023). Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs). Polymers, 15(4), 884. https://doi.org/10.3390/polym15040884