Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Films
2.3. Characterization
3. Results and Discussion
3.1. Thermal Stability
3.2. Film Analysis
3.3. XPS Studies by Depth-Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef]
- Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M.; et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today 2020, 35, 168–194. [Google Scholar] [CrossRef]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT: PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef]
- Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E.S.; Dahiya, R. A Wearable Supercapacitor Based on Conductive PEDOT: PSS-Coated Cloth and a Sweat Electrolyte. Adv. Mater. 2020, 32, 1907254. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-T.; Kim, S.; Cheun, H.; Lee, H.; Lee, B.; Hwang, T.; Lee, S.; Yoon, W.; Lee, H.-M.; Park, B. Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 2016, 155, 264–272. [Google Scholar] [CrossRef]
- Lee, W.; Hwang, T.; Lee, S.; Lee, S.-Y.; Kang, J.; Lee, B.; Kim, J.; Moon, T.; Park, B. Organic-Acid Texturing of Transparent Electrodes toward Broadband Light Trapping in Thin-Film Solar Cells. Nano Energy 2015, 17, 180–186. [Google Scholar] [CrossRef]
- Gunawan, O.; Gokmen, T.; Warren, C.W.; Cohen, J.D.; Todorov, T.K.; Barkhouse, D.A.R.; Bag, S.; Tang, J.; Shin, B.; Mitzi, D.B. Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods. Appl. Phys. Lett. 2012, 100, 253905. [Google Scholar] [CrossRef]
- Park, H.H.; Kim, J.; Kim, G.; Jung, H.; Kim, S.; Moon, C.S.; Lee, S.J.; Shin, S.S.; Hao, X.; Yun, J.S.; et al. Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applications. Small Methods 2020, 4, 2070018. [Google Scholar] [CrossRef]
- Hwang, T.; Lee, B.; Kim, J.; Lee, S.; Gil, B.; Yun, A.J.; Park, B. From Nanostructural Evolution to Dynamic Interplay of Constituents: Perspectives for Perovskite Solar Cells. Adv. Mater. 2018, 30, 1704208. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, T.; Lee, S.; Lee, B.; Kim, J.; Kim, J.; Gil, B.; Park, B. Synergetic Effect of Double-Step Blocking Layer for the Perovskite Solar Cell. J. Appl. Phys. 2017, 122, 145106. [Google Scholar] [CrossRef]
- Lee, B.; Lee, S.; Cho, D.; Kim, J.; Hwang, T.; Kim, K.H.; Hong, S.; Moon, T.; Park, B. Evaluating the Optoelectronic Quality of Hybrid Perovskites by Conductive Atomic Force Microscopy with Noise Spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 30985–30991. [Google Scholar] [CrossRef] [PubMed]
- Yun, A.J.; Kim, J.; Hwang, T.; Park, B. Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 3554–3560. [Google Scholar] [CrossRef]
- Holovský, J.; Amalathas, A.P.; Landová, L.; Dzurňák, B.; Conrad, B.; Ledinský, M.; Hájková, Z.; Pop-Georgievski, O.; Svoboda, J.; Yang, T.C.-J.; et al. Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells. ACS Energy Lett. 2019, 4, 3011–3017. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, T.; Lee, B.; Lee, S.; Park, K.; Park, H.H.; Park, B. An Aromatic Diamine Molecule as the A-Site Solute for Highly Durable and Efficient Perovskite Solar Cells. Small Methods 2019, 3, 1800361. [Google Scholar] [CrossRef]
- Yun, A.J.; Gil, B.; Ryu, J.; Kim, J.; Park, B. Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Appl. Energy Mater. 2022, 5, 7192–7198. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, T.; Lee, S.; Lee, B.; Kim, J.; Jang, G.S.; Nam, S.; Park, B. Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance. Sci. Rep. 2016, 6, 25648. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Gil, B.; Yun, A.J.; Kim, J.; Woo, H.; Park, K.; Park, B. A Cu2O–CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation. ACS Appl. Energy Mater. 2020, 3, 7572–7579. [Google Scholar] [CrossRef]
- Lee, B.; Yun, A.J.; Kim, J.; Gil, B.; Shin, B.; Park, B. Aminosilane-Modified CuGaO2 Nanoparticles Incorporated with CuSCN as a Hole-Transport Layer for Efficient and Stable Perovskite Solar Cells. Adv. Mater. Interfaces 2019, 6, 1901372. [Google Scholar] [CrossRef]
- Gil, B.; Kim, J.; Yun, A.J.; Park, K.; Cho, J.; Park, M.; Park, B. CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials 2020, 10, 1669. [Google Scholar] [CrossRef]
- Ahn, N.; Jeon, I.; Yoon, J.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S.; Choi, M. Carbon-sandwiched perovskite solar cell. J. Mater. Chem. A 2018, 6, 1382–1389. [Google Scholar] [CrossRef]
- Kim, J.; Yun, A.J.; Gil, B.; Lee, Y.; Park, B. Triamine-Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905190. [Google Scholar] [CrossRef]
- Gil, B.; Yun, A.J.; Lee, Y.; Kim, J.; Lee, B.; Park, B. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electron. Mater. Lett. 2019, 15, 505–524. [Google Scholar]
- Yang, T.-Y.; Jeon, N.J.; Shin, H.-W.; Shin, S.S.; Kim, Y.Y.; Seo, J. achieving long-term operational stability of perovskite solar cells with a stabilized efficiency exceeding 20% after 1000 h. Adv. Sci. 2019, 6, 1900528. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Surmiak, M.-A.; Ruan, Y.; McMeekin, D.P.; Ebendorff-Heidepriem, H.; Cheng, Y.-B.; Lu, J.; McNeill, C.R. Light induced degradation in mixed-halide perovskites. J. Mater. Chem. C 2019, 7, 9326–9334. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, R.; Zhang, Z.; Xiong, J.; He, Z.; Fan, B.; Dai, Z.; Yang, B.; Xue, X.; Cai, P.; et al. Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Org. Electron. 2019, 71, 106–112. [Google Scholar] [CrossRef]
- Hwang, T.; Yun, A.J.; Kim, J.; Cho, D.; Kim, S.; Hong, S.; Park, B. Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls. ACS Appl. Mater. Interfaces 2019, 11, 6907–6917. [Google Scholar] [CrossRef]
- Jung, D.-R.; Kim, J.; Nahm, C.; Choi, H.; Nam, S.; Park, B. Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon. Electron. Mater. Lett. 2011, 7, 185–194. [Google Scholar] [CrossRef]
- Yun, A.J.; Kim, J.; Gil, B.; Woo, H.; Park, K.; Cho, J.; Park, B. Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 50418–50425. [Google Scholar] [CrossRef]
- Kim, J.; Yun, A.J.; Park, B.; Kim, J. Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics. Electron. Mater. Lett. 2022, 18, 232–255. [Google Scholar]
- Kim, J.; Lee, Y.; Yun, A.J.; Gil, B.; Park, B. Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cell. ACS Appl. Mater. Interfaces 2019, 11, 46818–46824. [Google Scholar] [CrossRef]
- Ouyang, J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34, 423–436. [Google Scholar] [CrossRef]
- Mengistie, D.A.; Ibrahem, M.A.; Wang, P.-C.; Chu, C.-W. Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Highly Conductive PEDOT: PSS Nanofi brils Induced by Solution-Processed Crystallization. Adv. Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly Conductive PEDOT: PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Hosseini, E.; Kollath, V.O.; Karan, K. The key mechanism of conductivity in PEDOT: PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C 2020, 8, 3982–3990. [Google Scholar] [CrossRef]
- Berezhetska, O.; Liberelle, B.; Crescenzo, G.D.; Cicoira, F. A simple approach for protein covalent grafting on conducting polymer films. J. Mater. Chem. B 2015, 3, 5087–5094. [Google Scholar] [CrossRef]
- Park, M.U.; Lee, S.M.; Chung, D.-W. Model system of cross-linked PEDOT: PSS adaptable to an application for an electrode with enhanced water stability. Synth. Met. 2019, 258, 116195. [Google Scholar] [CrossRef]
- Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C.; et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575. [Google Scholar] [CrossRef]
- Håkansson, A.; Han, S.; Wang, S.; Lu, J.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X.; Fabiano, S. Effect of (3-glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT: PSS films. J. Polym. Sci. Pol. Phys. 2017, 55, 814–820. [Google Scholar] [CrossRef]
- Friedel, B.; Keivanidis, P.E.; Brenner, T.J.K.; Abrusci, A.; McNeill, C.R.; Friend, R.H.; Greenham, N.C. Effects of Layer Thickness and Annealing of PEDOT: PSS Layers in Organic Photodetectors. Macromolecules 2009, 42, 6741–6747. [Google Scholar] [CrossRef]
- Pingree, L.S.C.; MacLeod, B.A.; Ginger, D.S. The Changing Face of PEDOT: PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport. J. Phys. Chem. C 2008, 112, 7922–7927. [Google Scholar] [CrossRef]
- Aasmundtveit, K.E.; Samuelsen, E.J.; Pettersson, L.A.A.; Inganäs, O.; Johansson, T.; Feidenhans’I, R. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synt. Met. 1999, 101, 561–564. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.F.; de Mello, J.C.; de Mello, A.J.; Bradley, D.D.C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth. Met. 2003, 139, 569–572. [Google Scholar] [CrossRef]
- Antiohos, D.; Folkes, G.; Sherrell, P.; Ashraf, S.; Wallace, G.G.; Aitchison, P.; Harris, A.T.; Chen, J.; Minett, A.I. Compositional effects of PEDOT-PSS/single walled Carbon nanotube films on supercapacitor device performance. J. Mater. Chem. 2011, 21, 15987. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Park, C.-W.; Kang, H.-I.; Joe, S.-Y.; Pak, N.-Y.; Chung, D.-W. Novel Approach to Introduce Alkyl Chains into PEDOT: PSS and Its Effect on the Performance as a Flexible Electrode. Appl. Sci. 2021, 11, 6605. [Google Scholar] [CrossRef]
- Huseynova, G.; Kim, Y.H.; Lee, J.-H.; Lee, J.H. Rising advancements in the application of PEDOT: PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. J. Inf. Disp. 2020, 21, 71–91. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, Y.; Li, P.; Ho, K.; Blozowski, N.; Walker, G.; Jaffer, S.; Tjong, J.; Sain, M.; Lu, Z. The effect of tannic acids on the electrical conductivity of PEDOT: PSS Films. Appl. Sur. Sci. 2018, 448, 583–588. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Tannic Acid Adsorption and Its Role for Stabilizing Carbon Nanotube Suspensions. Environ. Sci. Technol. 2008, 42, 5917–5923. [Google Scholar] [CrossRef]
- Pires, F.; Ferreira, Q.; Rodrigues, C.A.V.; Morgado, J.; Ferreira, F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta Gen. Subi. 2015, 1850, 1158–1168. [Google Scholar] [CrossRef]
- Ferreira, Q.; Bernardo, G.; Charas, A.; Alcácer, L.; Morgado, J. Polymer Light-Emitting Diode Interlayers’ Formation Studied by Current-Sensing Atomic Force Microscopy and Scaling Laws. J. Phys. Chem. C 2010, 114, 572–579. [Google Scholar] [CrossRef]
- Keawprajak, A.; Koetniyom, W.; Piyakulawat, P.; Jiramitmongkon, K.; Pratontep, S.; Asawapirom, U. Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT: PSS film and performance of polymer photovoltaic cells. Org. Electron. 2013, 14, 402–410. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.; Kim, J.H. Highly Conductive PEDOT: PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials 2020, 10, 2211. [Google Scholar] [CrossRef] [PubMed]
- Park, N.I.; Lee, S.B.; Lee, S.M.; Chung, D.-W. Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer. Appl. Chem. Eng. 2014, 25, 581–585. [Google Scholar] [CrossRef][Green Version]
- Greczynski, G.; Kugler, T.; Keil, M.; Osikowicz, W.; Fahlman, M.; Salaneck, W.R. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: A mini-review and some new results. J. Electron Spectrosc. Relat. Phenom. 2001, 121, 1–17. [Google Scholar] [CrossRef]
- Geißler, S.; Barrantes, A.; Tengvall, P.; Messersmith, P.B.; Tiainen, H. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir 2016, 32, 8050–8060. [Google Scholar] [CrossRef]
- Hwang, S.; Park, N.I.; Choi, Y.J.; Lee, S.M.; Han, S.Y.; Chung, D.-W.; Lee, S.H. PEDOT: PSS nanocomposite via partial intercalation of monomer into colloidal graphite prepared by in-situ polymerization. J. Ind. Eng. Chem. 2019, 76, 116–121. [Google Scholar] [CrossRef]
- Kanwat, A.; Jang, J. High work function with reduced phase separation of PSS in metal oxide modified PEDOT: PSS interlayers for organic photovoltaics. RSC Adv. 2016, 6, 114800–114807. [Google Scholar] [CrossRef]
Concentration of TA | Surface Resistance (kΩ/sq) | Film Thickness (nm) | ||||||
---|---|---|---|---|---|---|---|---|
By α-Step | By SEM | |||||||
Before Incubation * (Rso) | After Incubation * (Rs) | Rs/Rso | Before Incubation * | After Incubation * | Before Incubation | After Incubation | ||
Pristine | - | 0.77 ± 0.05 | 1020.33 ± 230.38 | 1321.10 | 38 ± 7 | 36 ± 9 | 35.7 | 37.7 |
Addition of TA | 1% | 0.76 ± 0.05 | 880.33 ± 221.38 | 1154.79 | 79 ± 18 | 75 ± 17 | 67.0 | 71.4 |
2% | 1.04 ± 0.19 | 10.49 ± 3.34 | 10.12 | 206 ± 26 | 209 ± 38 | - | - | |
4% | 1.84 ± 0.77 | 11.89 ± 1.89 | 6.46 | 397 ± 79 | 372 ± 84 | - | - | |
Dipping in TA solution | 1% | 0.92 ± 0.12 | 1.15 ± 0.16 | 1.24 | 302 ± 26 | 261 ± 41 | 357.3 | 332.6 |
2% | 1.05 ± 0.17 | 1.26 ± 0.26 | 1.20 | 428 ± 62 | 406 ± 80 | - | - | |
4% | 4.20 ± 1.59 | 5.19 ± 1.43 | 1.23 | 448 ± 98 | 423 ± 90 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.-S.; Lee, J.-Y.; Kim, J.; Pak, N.-Y.; Kim, J.; Chung, D.-W. Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film. Polymers 2022, 14, 4908. https://doi.org/10.3390/polym14224908
Hwang I-S, Lee J-Y, Kim J, Pak N-Y, Kim J, Chung D-W. Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film. Polymers. 2022; 14(22):4908. https://doi.org/10.3390/polym14224908
Chicago/Turabian StyleHwang, In-Seong, Ju-Yeong Lee, Jihyun Kim, Na-Young Pak, Jinhyun Kim, and Dae-Won Chung. 2022. "Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film" Polymers 14, no. 22: 4908. https://doi.org/10.3390/polym14224908
APA StyleHwang, I.-S., Lee, J.-Y., Kim, J., Pak, N.-Y., Kim, J., & Chung, D.-W. (2022). Post-Treatment of Tannic Acid for Thermally Stable PEDOT:PSS Film. Polymers, 14(22), 4908. https://doi.org/10.3390/polym14224908