Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Nanocomposites
2.3. Production of Prepregs and Laminates
2.4. Characterization Methods
2.4.1. X-Ray Photoelectron Spectroscopy (XPS)
2.4.2. Interlaminar Shear Strength (ILSS) Testing
2.4.3. Fracture Toughness Testing of Cured Nanocomposites and Prepreg Laminates
2.4.4. Scanning and Transmission Electron Microscopy
3. Results and Discussions
3.1. XPS Studies of MWCNTs and Their Morphology in Epoxy
3.2. Fracture Toughness of Nanocomposites
3.3. Interlaminar Shear Strength of Prepreg Laminates
3.4. Interlaminar Fracture Toughness of Prepreg Laminates
3.5. Micromechanical Toughening Mechanisms in Prepreg Laminates
3.5.1. Mode I Loading
3.5.2. Mode II Loading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, N.V. Composite Materials in Aerospace Applications. Int. J. Sci. Res. Publ. 2014, 4, 1–10. [Google Scholar]
- Unnikrishnan, K.P.; Thachil, E.T. Toughening of epoxy resins. Des. Monomers Polym. 2006, 9, 129–152. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.-F.; Shieh, Y.-D. Core-shell particles designed for toughening the epoxy resins. II. Core-shell-particle-toughened epoxy resins. J. Appl. Polym. Sci. 1998, 70, 2313–2322. [Google Scholar] [CrossRef]
- Ratna, D.; Banthia, A.K. Rubber toughened epoxy. Macromol. Res. 2004, 12, 11–21. [Google Scholar] [CrossRef]
- Kothmann, M.H.; Zeiler, R.; de Anda, A.R.; Brueckner, A.; Altstaedt, V. Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles. Polymer 2015, 60, 157–163. [Google Scholar] [CrossRef]
- Kothmann, M.H.; Ziadeh, M.; Bakis, G.; de Anda, A.R.; Breu, J.; Altstaedt, V. Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J. Mater. Sci. 2015, 50, 4845–4859. [Google Scholar] [CrossRef]
- Bakis, G.; Kothmann, M.H.; Zeiler, R.; Brueckner, A.; Ziadeh, M.; Breu, J.; Altstaedt, V. Influence of size, aspect ratio and shear stiffness of nanoclays on the fatigue crack propagation behavior of their epoxy nanocomposites. Polymer 2018, 158, 372–380. [Google Scholar] [CrossRef]
- Wang, X.; Jin, J.; Song, M. An investigation of the mechanism of graphene toughening epoxy. Carbon 2013, 65, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Sumfleth, J.; Prehn, K.; Wichmann, M.H.G.; Wedekind, S.; Schulte, K. A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD- and arc-grown multi-wall carbon nanotubes. Compos. Sci. Technol. 2010, 70, 173–180. [Google Scholar] [CrossRef]
- Domun, N.; Paton, K.R.; Hadavinia, H.; Sainsbury, T.; Zhang, T.; Mohamud, H. Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials 2017, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, S.; Bhuyan, M.; Allie, L.; Aglan, H. Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. J. Mater. 2005, 40, 3593–3595. [Google Scholar] [CrossRef]
- Ganguli, S.; Aglan, H.; Dennig, P.; Irvin, G. Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites. J. Reinf. Plast. Compos. 2006, 25, 175–188. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Qian, D.; Liu, W.K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Charlier, J.C.; Hernandez, E. Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2065–2098. [Google Scholar] [CrossRef]
- Gupta, M.L.; Sydlik, S.A.; Schnorr, J.M.; Woo, D.J.; Osswald, S.; Swager, T.M.; Raghavan, D. The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Inam, F.; Vo, T.; Jones, J.P.; Lee, X. Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study. J. Compos. Mater. 2013, 47, 2321–2330. [Google Scholar] [CrossRef]
- Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Schulte, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study. Compos. Sci. Technol. 2005, 65, 2300–2313. [Google Scholar] [CrossRef]
- Veedu, V.P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P.M.; Ghasemi-Nejhad, M.N. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 2006, 5, 457–462. [Google Scholar] [CrossRef]
- Bekyarova, E.; Thostenson, T.; Yu, A.; Kim, H.; Gao, J.; Tang, J.; Hahn, H.T.; Chou, T.-W.; Itkis, M.E.; Haddon, R.C. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 2007, 23, 3970–3974. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.J.; Wardle, B.L.; Hart, A.J. Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1065–1070. [Google Scholar] [CrossRef]
- Zeiler, R.; Kuttner, C.; Khalid, U.; Kothmann, M.H.; Dijkstra, D.; Altstaedt, V. The Role of Multi-Walled Carbon Nanotubes in Epoxy Nanocomposites and Resin Transfer Molded Glass Fiber Hybrid Composites: Dispersion, Local Distribution, Thermal, and Fracture/Mechanical Properties. Polym. Compos. 2015, 38, 1849–1863. [Google Scholar] [CrossRef]
- Lonjon Demont, P.; Dantras, E.; Lacabanne, C. Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes. J. Cryst. Solids 2012, 358, 1859–1862. [Google Scholar] [CrossRef] [Green Version]
- Godara, A.; Mezzo, L.; Luizi, F.; Warrier, A.; Lomov, S.V.; Vuure, A.W.; Gorbatikh, L.; Moldenaers, P.; Verpoest, I. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 2009, 47, 2914–2923. [Google Scholar] [CrossRef]
- Bradley, W.L. Understanding the translation of neat resin toughness into delamination toughness in composites. Key Eng. Mater. 1989, 37, 161–198. [Google Scholar] [CrossRef]
- Altstädt, V.; Gerth, D.; Stangle, M.; Recker, H.G. Interlaminar Crack-Growth in 3Rd-Generation Thermoset Prepreg Systems. Polymer 1993, 34, 907–909. [Google Scholar] [CrossRef]
- Assami, Y.E.; Habti, M.D.; Raman, V. Stiffening offshore composite wind-blades bonding joints by carbon nanotubes reinforced resin-a new concept. J. Struct. Integr. Maint. 2020, 5, 87–103. [Google Scholar] [CrossRef]
C, O and Their Bonding | Neat MWCNTs | Plasma-Treated CNTs |
---|---|---|
Carbon (%) | 98.75 ± 0.45 | 96.30 ± 0.28 |
Oxygen (%) | 1.25 ± 0.45 | 3.70 ± 0.28 |
C–O bonds (%) | 82.35 ± 3.45 | 69.65 ± 2.05 |
C=O bonds (%) | 17.65 ± 3.45 | 30.35 ± 2.05 |
Resin - | GIc–Resin J/m2 | GIc–Laminate J/m2 | GIIc–Laminate J/m2 |
---|---|---|---|
Reference | 71 ± 11 | 250 ± 67 | 754 ± 94 |
CNT-n modified | 82 ± 13 | 216 ± 70 | 641 ± 170 |
CNT-p modified | 98 ± 8 | 356 ± 52 | 952 ± 170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakis, G.; Wendel, J.-F.; Zeiler, R.; Aksit, A.; Häublein, M.; Demleitner, M.; Benra, J.; Forero, S.; Schütz, W.; Altstädt, V. Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates. Polymers 2021, 13, 770. https://doi.org/10.3390/polym13050770
Bakis G, Wendel J-F, Zeiler R, Aksit A, Häublein M, Demleitner M, Benra J, Forero S, Schütz W, Altstädt V. Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates. Polymers. 2021; 13(5):770. https://doi.org/10.3390/polym13050770
Chicago/Turabian StyleBakis, Gökhan, Jan-Felix Wendel, Rico Zeiler, Alper Aksit, Markus Häublein, Martin Demleitner, Jan Benra, Stefan Forero, Walter Schütz, and Volker Altstädt. 2021. "Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates" Polymers 13, no. 5: 770. https://doi.org/10.3390/polym13050770
APA StyleBakis, G., Wendel, J.-F., Zeiler, R., Aksit, A., Häublein, M., Demleitner, M., Benra, J., Forero, S., Schütz, W., & Altstädt, V. (2021). Mechanical Properties of the Carbon Nanotube Modified Epoxy–Carbon Fiber Unidirectional Prepreg Laminates. Polymers, 13(5), 770. https://doi.org/10.3390/polym13050770